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ABSTRACT 

Aschbacher's local C(G; T) theorem asserts that if G is a finite group 

with F*(G) = 02(G), and T E SyI2(G), then G = C(G; T)K(G), where 
C(G; T) = (NG(TO)I1 ~ To char T} and K(G) is the product of all near 
components of G of type L2(2 ~) or A2-+I. Near components are also 

known as x-blocks or Aschbacher blocks. In this paper we give a proof 

of Aschhacher's theorem in the case that G is a K-group, i.e., in the case 

that every simple section of G is isomorphic to one of the known simple 

groups. Our proof relies on a result of Meierfrankenfeld and Stroth [MS] 

on quadratic four-groups and on the Baumann-Glauberman-Niles theorem, 

for which Stellmacher [St2] has given an amalgam-theoretic proof. Apar t  

from those results, our proof is essentially self-contained. 
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I n t r o d u c t i o n  

It is especially fitting to honor John Thompson by writing on a topic of local 

group-theoretic analysis. Indeed, in the course of his verification of the Frobe- 

nius conjecture on fixed-point-free automorphisms, his proof with Felt of the 

solvability of groups of odd order, and his classification of N-groups (in partic- 

ular, of the minimal simple groups), Thompson pioneered the development of 

the local techniques that were to dominate the classification of the finite simple 

groups over the next 20 years. 

Prominent among the many ideas introduced by Thompson in these papers is 

the notion of the factorization or failure of factorization of a finite group G as 

the  product of the normalizers (or centralizers) of suitable pairs of characteristic 

subgroups of a given Sylow subgroup of G. Aschbacher's local C(G; T) theorem, 

a high point of local group theory during the final years, can be viewed as the 

ultimate extension of Thompson's ideas in one direction. Moreover, this deep 

result played a critical role in the classification of simple groups of characteristic 

2 type. 

By definition, for any subgroups X and R of the finite group G with R a 

2-group, 

C(X; R) = (Nx(Ro)] 1 ¢ Ro char R>. 

Asehbacher's theorem [As2] asserts the following. 

THEOREM (Aschbacher): Let G be a group with F*(G) = O2(G), and let T E 

Syl2(G). Then G = K(G)C(G; T), where K(G) is the produc  or com- 

ponents o[G o[ type L2(2") or A2-+1. 

By definition, a n e a r  c o m p o n e n t  of G of  type  L2(2") or A,  (also called a 

x-block or Aschbacher block) is a subnormal subgroup L of G with the following 

properties: 

(1) F*(L) = 02(L) and L = 02(L); 

(2) L/O2(L) ~- L2(2")', n _> 1, or A,, n _> 5 or n = 3; 

(3) If V = al(Z(O2(L))), then L centralizes 02(L)/V; and 

(4) If V = [V, L] ( = [V, L/Oe(L)]), then correspondingly U/Cu(L) is the 

natural 2-dimensional F2--module or the unique nontrivial irreducible con- 

stituent of the permutation module for L/02 (L) (referred to as the standard 

A.-module). 
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Remark: Near components L of type L2(2) and A3 are isomorphic as L2(2)' 

Aa ~ Z3, and in either case [V,L] ~ E4. On the other hand, even though 

L2(4) -~ As, near components of these types are not isomorphic inasmuch as the 

corresponding modules are not quasi-equivalent. II 

The subgroup K(X) of any group X may be defined as in the theorem, and 

is clearly a characteristic subgroup of X. (If no near components of X of the 

appropriate types exist, we set K(X) = 1,) 

For brevity, it is convenient to introduce the following terminology for any T- 

invariant subgroup Gl of G containing O2(G): We say that G1 has A s c h b a e h e r  

f o r m  ( re l a t ive  to  T)  provided G1 = K(G1)C(G1 ;T).  

By a K-group we mean a group all of whose simple sections are isomorphic 

to known simple groups. However, Aschbacher does not assume that G is a K-  

group, instead allowing G to be an arbitrary finite group with F*(G) = 02(G). 
But as a result he is forced to adopt a somewhat intricate strategy, based on a 

deep preliminary nongenerational result [Asl], which is critical for dealing with 

a minimal configuration arising in the proof of his local C(G; T) theorem. In 

particular, to identify the groups which appear in the conclusion of this prior 

result (namely, the groups S L , ( 2 " )  and En), Aschbacher invokes two classifi- 

cation theorems: one by McLaughlin [Mc] on groups generated by transvections 

and the other by Timmesfeld [Ti] on groups with a weakly closed T.I. set. 

Furthermore, an integral part of his argument in [As2] is a form of L-balance 

for near components, the proof of which is somewhat technical and, in particular, 

requires a third classification theorem, due to Stelhnacher [Stl], on groups gen- 

erated by a conjugacy class of elements of order 3. In the original classification 

proof, this generalized L-balance was used along with the local C(G; T) theorem 

in the analysis of simple groups of characteristic 2 type. 

On the other hand, for applications to the classification of the simple groups, 

the local C(G; T) theorem is needed only in the case that G is a K-group. More- 

over, a revised strategy exists in which Aschbacher's general L-balance result for 

near components is not required. Under such a K-group assumption, it is in fact 

possible to give a considerably more direct proof of the local C(G; T) theorem 

by abstracting relevant portions of Aschbacher's argument in [As2], completely 

avoiding [Asl] as well as L-balance for near components (and thus reference to 

[st1]). 
Indeed, except when certain critical sections of G are groups of Lie type of 
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odd characteristic, and a few other groups, inductive arguments enable one to 

eliminate all but those configurations which lead to the desired conclusions. On 

the other hand, the case of Lie type of odd characteristic can be eliminated by 

appeal to a recent short elegant result of Meierfrankexffeld and Stroth [MS] con- 

cerning Fz-modules admitting quadratic four-groups. Their paper represents a 

considerable simplification of Aschbacher's earlier treatment [As3] of such failure 

of Thompson factorization modules. 

It should also be noted that Aschbacher handles minimal configurations in the 

local C(G; T) theorem involving the groups L2(2") by reference to a fundamental 

theorem of Baumann-Glanberman-Niles ([B], [GN], [Nil). One can now appeal to 

a simplified proof of their result due to Stellmacher [St2], based on the amalgam 

method. 

In view of the critical role of the K-group version of the local C(G; T) theorem 

in the classification of groups of characteristic 2 type (and, more generally, in the 

classification of groups of even type), it is important to have available an easily 

accessible proof of this result; and it is the purpose of this paper to provide such 

a treatment. 

Thus we shall prove 

THEOREM A: If G is a K-group with F*(G) = O2(G), then G has Aschbacher 

form (relative to a Sylow 2-subgroup). 

Our contributions here are limited primarily to the observation that the K- 

group assumption enables one to give a straightforward proof of the theorem, 

and to the organization and exposition of the resulting argmnent. 

Indeed, essentially every minimal configuration we encounter has been treated 

by Aschbacher in [As2]. Our aim has been to make this paper reasonably self- 

contained and so we include complete arguments for each such minimal configu- 

ration, occasionally achieving some simplification. We also include a treatment 

of failure of factorization for the solvable case, which is a very minor variation of 

a theorem of Glauberman [Gll]. 

We recall the fundanlental configuration associated with the analysis of Thomp- 

son factorization [Th]. Let X be a group such that F*(X) = 02(X). An elemen- 

tary abelian 2-subgroup V of X is 2-reduced (in X) if and only if 

v, x and O (X/Cx(V)) = 1. 
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Let T E Syl~(X) and set Z = I)I(Z(T)). Then such subgroups V exist; for 

instance, V = (Z x) is 2-reduced in X. For any 2-reduced subgroup V, V _< T as 

V ,~ X; and the study of Thompson factorization involves the following groups: 

Z, J = J(T), E = ~,(Z(J(T))), S =  CT(E), Q = 02(X), 

C -= Cx(Y), and .X = X/C. 

Here J(T) = (A(T)), and A(T) is the set of all elementary abelian subgroups 

of T of maximal rank. The subgroup S is called the B a u m a n n  s u b g r o u p  of T. 

We refer to all these subgroups and factor groups as constituting a 2 - r e d u c e d  

s e t u p  (in X),  and we use this notation for such a setup wherever possible. 

In a 2-reduced setup, since 02(-~) = 1, we have 

Q <_ c and V <_ ~,(Z(Q)). 

The 2-reduced subgroup V (or its setup) is called s ingu la r  if and only if 

• - 2 # 1 .  

If Z g V and V is not singular, then Thompson factorization holds, that 

is, X = Cx(Z)Nx(J) .  Indeed, J = J(T A C),~Nx(T N C), C = Cx(Y)  < 

Cx(Z), and X = CNx(T  t3 C) by the Frattiui argument. Consequently, in a 

counterexample G to the theorem, V = (Z c') gives a singular 2-reduced setup. 

Finally, we give a brief outline of this paper. §§1-7 can be viewed as preparatory 

to the proof of Theorem A. In particular, in §1 we state the two key results on 

which the proof depends from [MS] and [St2]. §2 iucludes a basic property of 

near components. In §§3 and 4 we study groups X having a singular 2-reduced 

setup for various K-groups .~, while in §5 we establish generational results for 

simple K-groups needed for our inductive argument. Then in §§6 and 7 we 

establish Baumann's critical L2(2") lemma mid Aschbacher's ~2,+1 analogue. 

These results are used in the proof of Theorem A to reduce direct products of 

L2(2")'s and of A2,+l 's  to the case of a single factor. 

With these results at our disposal we consider a minimal counterexample G 

to Theorem A in §§8, 9, and 10. By assumption, G is a K-group with F*(G) = 

02(G). We consider the 2-reduced subgroup V = (Z G) and its setup, with 

notation as above. As noted there, if the co,'responding setup is not singular, 

then G = CG(Z)Na(J), so G <_ C(G; T). Therefore, the setup is singular, so the 

results of §§3-7 apply to G. The minimality of G implies the following assertion: 
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(*) If Q < H and H is T-invariant, then H has Aschbacher form (relative to T) 

if and only if HT < G. 

Using (*), we argue in §8 that if H is any normal subgroup of G containing 

Q with HT < G, then necessarily Q E SyI2(H ). As an immediate corollary, it 

follows first that Q E Syl2(C) and second that either F*((~) -- E(G) is a product 

of isomorphic components transitively permuted by T or else F*((~) = F((~) < 

In §9, on the basis of the earlier analysis, we reduce the possibilities for the 

structure of G further; namely, we force (~ to have one of the following forms: 

= L2(2n), n >_ 1, or ~ n + l ,  n >_ 2, or AT. Moreover, in the second case, G 

has a near component of type A2,,+1. In the third case, G has what we shall 

call a near  component  of  small AT-type, namely, a subnormal subgroup L 

satisfying conditions (1) and (3) in the definition of near component above, but 

with L/O2(L) ~- A7 and U -- [V, L] ~- El~. 

Finally, in §10 we rule out the third case and show that G has Aschbacher form 

in the two residual cases, a contradiction, thus completing the proof of Theorem 

A. 

We extend our gratitude to both Professor Thompson and the referee, who 

pointed out several errors azld obscurities in our manuscript and suggested useful 

changes. 

1. Assumed results 

Throughout the paper X will denote a K-group with F*(X) = O2(X), so that X 

has a 2-reduced setup (as stipulated in the Introduction, with the accompanying 

notation). 

In this section we state the two key results on which the proof depends. The 

first is the Baumann-Glauberman-Niles theorem, for which we use [St2] as ref- 

erence. 

THEOREM 1 . 1 :  Assume Q E SyI2(C) and set R = X/Q. / t ' 2 / ~ ( ) ( )  ~ L2(2n), 

n > 1, and no nontrivial characteristic subgroup ofT is normal in X,  then 02(X) 

is a near component of X of type L2(2'*). 

Next we state the Aschbacher-Meierfrankenfeld-Stroth theorem [MS]. 
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THEOREM 1.2: Assume that L = F*(.Y) is a quasisimple group of Lie type of 

odd characteristic, and that L q[ Chev(2). If f f  contains a four-group ~] such 

that [V, U, U] = 1, then L -~ 3U4(3) or [3 x 3]U4(3). 

Remark: Any elementary abelian 2-subgroup [] of X such that [V, U, U] = 1 

is said to act quadratically on V. In the case that X has a singular 2-reduced 

setup, Thompson's replacement theorem (el. [Go; 8.25]) implies the existence of 

A E A(T) such that .4 ~ 1 and .4 acts quadratically on V. See Lemma 3.1. | 

Beyond these results, the proof of Theorem A depends on standard results of 

local analysis, including the Baer-Suzuki theorem and Glauberman's Z*-theorem 

[G12]. In addition, we require generational results for known simple groups other 

than those of Lie type of odd characteristic, and also more detailed properties 

of certain specific (families of) simple groups - -  including the basic modules for 

L2(2"), (S)L3(2"), and Sp4(2") over algebraically closed fields of characteristic 

2, in conjunction with Steinberg's tensor product theorem. 

2. P r o d u c t s  o f  n e a r  c o m p o n e n t s  

In this section we establish the following important property of near components 

[As2; 3.4]. As stipulated in §1, X is a K-group with F*(X) = O2(X); however, 

only the latter assumption is needed here. 

PROPOSITION 2.1: Distinct near components of X centralize each other. 

Proof: Let K,  L be distinct near components of X. Also set Q = O2(X) and 

f (  = X/Q.  By the subnormality of K and L, 02(K)  and 02(L) are contained 

in Q, and as K = 02(g) ,  we have g = 02(KQ) and similarly L = 02(LQ). 

In particular, K and L have unique noncentral chief factors in their action on 

Q, a n d / ~  ~ L. Furthermore, if K is nonsolvable, then a s / ~  is subnormal in X" 

and quasisimple,/~" is a component of X'. On the other hand, if K is solvable, 

we conclude by induction on the length of a normal series from K to X that 

K < O23(X), whence/~ < O3()(). Similar statements hold for L. 

Suppose first that, say, K is nonsolvable. Then/~" centralizes O3(X'), so by the 

preceding paragraph/~ centralizes L whether L is nonsolvable or solvable. Thus 

g and L normalize each other, and [L, g ]  _< Q. Set W = [g, Q]. Then K / W  

is quasisimple so [L, K] _< W. If L is solvable, then L ~ A4 and obviously K 

centralizes L, so we can assume that L is nonsolvable. Since L acts on W / C w ( K )  
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and commutes with the irreducible action of K on the module, L = L' centralizes 

W / C w ( K ) .  But as noted above, [L, K] _< W, so Wo = [L, K, L] <_ Cw(K) .  Thus 

W0 is normalized by K as well as L. Setting Y = KLWo and Y = Y/Wo = KL,  

it follows that [/~, L, L] = 1. Since L is perfect, the three subgroups lemma 

yields that  [/~, L] = 1, so [g, L] <_ Wo <_ Cw(K) .  Hence [K, L, K] = 1. Another 

application of the three subgroups lemma shows that [K, L] = 1 as K is perfect. 

Thus the proposition holds if K is nonsolvable; by symmetry it also holds if L is 

nonsolvable. 

Suppose finally that g and L are solvable. Let (x) E Syl3(K) and (y) E Syl3(L) 

and set /~  = (~,.~) = (K,L) .  By what we have shown above, k _< O3()(). Now 

Z(Q) > W = o 2 ( g )  -~ E4 and g centralizes Q/W.  Likewise Z(Q) >_ Y = 

O2(L) - E4 and L centralizes Q/V.  Thus K and L normalize V W  and centralize 

Q / V W .  Since F*(X) = Q, the 3-group/~ therefore acts faithfully on V W.  But 

[VW[ <_ 16 and so/~ _< E9 (as GL4(2) has E9 Sylow 3-subgroups). Since/~ ¢ L, 

R~ = E 9 . 

If V --- W, then some element of _~# centralizes Q, contrary to F*(X)  = Q. 

It follows that V N W =  1, so V W  = V x  W. But /~L = / ~  × L ,  so a g a i n K  

normalizes L and L normalizes K.  Since K ~- L ~- A4 and V A W  = 1, K A L  = 1. 

Hence [K, L] _< K n L = 1, so the proposition holds in this case as well. 

3. Failure of Thompson factorization 

In this section we establish the results we need concerning failure of Thompson 

factorization for the group X. We assume throughout that X has a singular 

2-reduced setup (as agreed, X is a K-group with F*(X) = O2(X) with the 

accompanying notation as in the Introduction). 

In this situation, V is an FzX-module, f ~ 1 by assumption, and the following 

basic facts are fundamental for studying the action of f on V. 

LEMMA 3.1: Let A 6 .A(T) with A ~ 1, and set Ao = A n C and Vo = Cv(A).  

Then the following conditions hold: 

(i) I V : Vol _< [-2-1. In particular, i rA  = (~) ~- Z2, then equality holds and 

induces a transvection on V; 

(ii) I f  equality holds in (i), then AoV E A(T); 

(iii) Ao n V <_ Vo; 

(iv) For any fi E i #, m([V, ~1) = m(V/Cv(a) )  and Vo <_ Cv(~); and 
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(v) If  there is no A1 6 .A(T) such that 1 7£ A1 < A, then 

(1) A acts quadratically on V (that is, [V, A] <_ Vo); and 

(2) If[ft.[ > 2, then Vo = Cv(B)  for every hyperplane B of A. 

Proof'. Since A is abelian, A centralizes A N V  = AoNV, so AoMV <_ Vo, proving 

(iii). But VAo is elementary abelian, so m(VA0) _< m(A) = m(Ao) + m(A). 

However, m(VAo) = re(V) + m(Ao) - m(V  N Ao) >_ re(V) + m(Ao) - m(Vo), so 

re(A)  > r e ( v )  - m(yo)  = m(V/Vo) .  

Also, if m(.~) = 1, then as 2 acts faithfully on V, m(Y/Vo) = 1, so 2 = (a} 

centralizes a hyperplane of V and hence induces a transvection on V. Thus (i) 

holds. Furthermore, if equality holds in (i), the preceding calculation shows that 

m(VAo) = re(A), whence YAo e A(T),  proving (ii). 

As for (iv), obviously Vo = Cv(A) < Cv(~) for any ~ E 2 #. Furthermore, 

as a is an involution, it is immediate that m(Y/Cy(a) )  = re(IV, ~]), so (iv) holds. 

Finally, as V is abelian, the Thompson replacement theorem implies (vl). 

Indeed, if (vl)  fails, then IV; A, A] ¢ 1, so [B, A, A] ¢ 1, where B = YAo. By that 

theorem there is A* E .A(BA) such that [A* N B[ > ]AN B I and [A*, A, A] = 1. 

Since [B, A, A] ~ 1, A* ~ B, so A* 2~ B. These conditions imply 1 # [A---Z[ < [.2,[, 

contrary to assumption. Thus (vl)  holds. Suppose that (v2) fails for some J~ 

of index 2 in 2.  Then B ~ 1 as [2[ > 2 by assumption and if V~ = Cv(B) ,  

then V0 < VI. Let B be the preimage of B in A, so that BV1 is elementary. 

By our choice of A, BV1 E A(T).  However, as/~V1 = / ~  < .4, this contradicts 

our hypothesis on A. Hence (v2) also holds, and the lemma is proved. [The 

replacement theorem [Go; 8.2.5] is stated for a definition of .A(T) and J(T)  

slightly different from our definitions here, but the same result is true for our 

definitions, assuming that B is elementary abelian, as is the case here. The proof 

is the same.] 

We also need the following general result here and later in the paper about 

involutions of f (  acting on subgroups of f (  of odd order. To state it, for any 

cyclic group Y -- (y) of odd order, define d(Y) = d(y) to be the smallest degree 

of a faithful module over F~ for the dihedral group of order 21Y I. 

LEMMA 3.2: Let t be an involution o f f (  and Y a nontrivial t-invariant subgroup 

of 5( of odd order such that l 7, = [Y, t]. Then the following conditions hold: 

(i) If~" is cyclic, then m([V,~) > ½d(Y); 

(ii) I f {  induces a transvection on V, then 
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(1) 17, ~ Z~; 

(2) I~ $z < o(Yc), then ~ ~ O~,2(R); a ~  

(3) t leaves invariant every component of f(; 
(iii) Lf Y" TM 31+2 and we set W = [V, Z(IT')], then re(W) = 6r/ 'or  some r >_ 1 

and m([W, tq) > 2~; 
(iv) If i" is a 3-group with ~ ' /¢ (? )  ~ E81 and m([Y,~) < 2, then 31+4 is not a 

homomorphic image of 17"; and 

(v) / t ' l  7" = Z(I7"1), where ]"1 ~ 31+2", then m([V,t-]) > 3". 

Proof'. Let k = m([V,t-]) and V0 = Cv(t-). Since [ is  an involution, it follows that 

re(V/V0) = k. Suppose (i) falls and set 17. = (.0). Then m(V/Vo) < ½d(Y) and 

hence m(V/U) < d(IZ), where U = V0 N V0 ~. But t inverts l 7", so I~(t -) = (t-, if}. 

However, the latter group centralizes U, so Y centralizes U and therefore Y'(t-) 

acts faithfully on V/U, which has dimension n < d(Y). This contradicts the 

definition of d(IT"), so (i) holds. 

Suppose now that t acts as a transvection on V, so that k = 1 and 

m(V/Vo) = 1. Hence by (i), t inverts no element of l 7" of order > 3. Thus if 

(iil) falls and Y" is chosen minimal to violate its conclusion, then I 7" is a 3-group 

and Y'/O(I 7") ~ E9 is inverted by t. Therefore I7" = (.01, Y2) with Yi inverted by 

t, i = 1,2, and Y'(t-) = (~,~t,[92). This time, setting U = V0 f') V0 ~ Iq V0 ~', it 

follows that  m(V/U) < 3, and again l 7" centralizes U and acts faithfully on V/U. 

However, Aut(V/U) <_ GLs(2), which has Sylow 3-subgroups of order 3, contrary 

to 117"1 >_ 9. Thus (iil) also holds. 

Now assume that (ii2) falls and set )( = f~/O2,2(f(), so that t" is an in- 

volution and O2()~) = 1. By the Baer-Suzuki theorem [Go; 3.8.2], t inverts an 

element Yl E )~ of odd prime order. Then t inverts an element yl of odd order 

in )(  mapping on .01. Hence if we set lYl = (I 7", ffl ), then 17"1 = [17"1, t-]. But Y'I > l 7" 

as Y" _< O(X) by assumption. Thus 11211 > 3, contrary to (iil). Therefore (ii2) 

also holds. 

Suppose that t does not leave invariant some component L of X. Since L 

is not a {2, 3}-group, t inverts an element ff of LLt  of prime order p > 5. But 

then (iil) is contradicted with ~" = (if), so (ii3) also holds. 

Next, assume I7" and W are as in (iii), so that Z(I  7") has no nontrivial fixed 

points on W. In particular, every chief factor of WY within W is a faithful 

irreducible IY-module. Since l 7" ~ 3 ~+2, each such chief factor has rank 6, so 

re(W) = 6r, where V is the number of such factors. 
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Let W1 _< W be irreducible as IV-module. Now W is t--invariant, so W[ < 

W. Then either W1 f3 W1 t = 1 or W t = W1. Proceeding by induction on r, it 

suffices to prove (iii) for WI W[. If W1 N W~ = 1, then t interchanges W1 and W[, 

whence m([Wl W~, ~) = 6, in which case the desired conclusion clearly holds. On 

the other hand, if t leaves 1~1 invariant, we need only show that m([W1, ~) > 2. 

However, if this fails, then t induces a transvection on W1 and hence (ii) fails 

(with W~ in place of V). Thus (iii) also holds. 

Next, let 9 be as in (iv) with m([V,t-]) _< 2, whence m(V/Vo) _< 2. Since 

[l?, t-] = Y, t inverts Y/(I)(] 7) -= Eal, so :17" = (~i[1 < i < 4), where each ~i is 

inverted by t. This time setting U = V0 N V0 ~1 ~ V0 ~2 n V0 ~3 N V0 ~*, we conclude 

as above that Y acts faithfully on V/U and that m(V/U) <_ 10, so ]2 embeds in 

GL10(2). However, one checks directly that a Sylow 3-subgroup of GL10(2) has 

an abelian subgroup of index 3, so does not involve 3 TM, and (iv) also holds. 

Finally, in (v), a faithful irreducible F2lFvmodule V1 has dimension 2- 3 n, 

and is acted on without fixed points by Y = Z(]7~ ). Since t inverts I?, dim[t, V1] = 

3 n, which implies (v). 

Next we state a reduction lemma which will be used frequently. 

LEMMA 3.3: Assume that A E A(T), A < B < T, m2d ITV is a B-invariant 

subgroup or.g s u ~  tha* 02(W) < Z(W). Set X, = BW,  R = 0~(5C~), and 

V1 = Cv(R), and let Xl  be the preimage of X1 in X.  Then the following 

conditions hold: 

(i) V1 is 2-reduced in X1; 

(ii) If  we put C~ = Cx,(V1) and X1 = X1/C1, then C1 = R, F*(fQ ) = F*(ITV) 

and W ~ W/o2(W); ~ d  

(iii) //" [A, W] ~ 02(W), then V1 is singular in X1. 

Proof'. Our hypotheses imply that [F*(I~), 02(X1 )] ~ 02(1~ r) _~ Z(17V). There- 

fore [F*(I~), O2()~1), F*(I~-)] = 1, m~d so every element of F*(I~)  of odd order 

centralizes O2(X1). By the A x B lemma, it follows that such an element of 

odd order centralizes V1 if and only if it is the identity. Hence C'1 f3 F*(I~V) = 

CF.(flo(V~) is a 2-group. But clearly O2(IzV) _< O2( .~)  _< C~, so C1 ~ F*(IzV) = 

O2(1~). Furthermore, F*(I;V)/O2(IZV) = F*(I;V/O2(I;V)) since O2(I4 r) ~ Z(i~r). 

Therefore (C1 N IId)/O2(i~d) is a normal subgroup of l?d/O2(lzd) disjoint from 

F*(ITV/O2(ITV)), so C'1 ~ W = O~(lzd). It follows that l~  ~ 1~¢'/O2(I~¢') and that 

C'~ is a 2-group, so C'1 = 02 (X1). 
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Therefore O2(X1) = 1, proving (i). Also F*(X1) = 0~(F*(21))  = F'(ITV) 

as 17d >_ O2(X'1). Now (ii) follows. Finally, if [A,W] ~ O2(1~), then by (ii), 

[.4, l~] # 1, so (iii) holds and the lemma is proved. 

Our first major result is due to Glaubernmn [Gll]. (His statement is limited 

to the case V = (Z x )  and X is solvable, but the result holds for an arbitrary 

singular 2-reduced setup in which X is solvable.) 

PROPOSITION 3 . 4 :  If f (  is solvable, then there exists an integer r > 1 such that 

(i) ( f x )  = L1 x . . -  x L~ with each Li = Ea; 

(ii) For each i, Li Iq T = (~i), where ft i acts as a transvection on V; 

(iii) V = V0 x VI x . . .  x V~, where V0 = Cv((JY¢)) and V/ = [V, Li] ~ E4 for 

1 < i < r, with Li faithful on ~ a~M [Li, V/] = 1 for all i # j ;  and 

(iv) S normalizes each Li, 1 < i < r. 

Proof." Observe that (iv) follows from the other parts. Nmnely, by (i) and the 

Krull-Schraidt theorem, ,~ permutes the Li, and permutes the V/in the same way. 

But by (i), E N V/ ~ 1 for all i, and so since Vi fq V/ = 1 for i ~ j ,  S = CT(E) 

normalizes each V/and hence each Li. 

For the other parts, we proceed by induction on I.~1. Set z) = o ( x )  and 

le t /~  = T O O2,2(X). I f ,~  > O2,2(X), then by induction (f~D) = L~ x - . -  x Lr  

as in the proposition. In particular, (f~t3) is generated by transvections on V, 

so lies in O2,2()() by Lemma 3.2. Thus f < T fq O2,2()() =/~.  Letting R be the 

preimage of/~ in T, we have by the Frattini argument that X = D N x ( R ) .  But 

N x ( R )  normalizes J(R)  = J. Thus (fiX) = (fD} = (f~D), and tim result follows 

by induction. We may therefore assume that X = / ) T .  If f < T, induction in 

D J  yields the desired assertion. Thus we may also assume that f = 7'. 

Let Ao(T) = {A • A(T)[A < T}. We next treat the case 

(3.1) = (.41A • Ao(T)). 

Let A E A0(T) and let To be a maximal subgroup of T such that .zi < T0, 

set X0 = D~'0, and let X0 be the prdmage of )~0 ill X. Set J0 = J(To), so that 

_< J0 and hence J0 # 1. Also set W = (Job), so that since Jo,~T, I;V = ( j ~ ) .  

By induction l?d = LI x .-- x Lr as in the proposition. If ] = J0, we are done, 

so we may assume that J0 < J, whence f ~ T0. 

We argue that J normalizes L,i for each i -- 1, 2 , . . . ,  r. If false, then by 

(3.1), for some B • Ao(T), [~ does not normalize L~, say. Since /3 < T, by 
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induction in DB, B is generated by elements/~ acting on V as transvections. For 

any such ~, C.(~) n [v, Ld # 1 as I[v : Ldl = 4. 

On the other hand, the groups [V, Li] generate their direct product. Con- 

sequently, for any $ G W of order 3, [V, ~] is the product of certain [V, Li], and 

i E L i  if and only if [17, ~] = [V, Li], so the [V, Li] are the minimal elements of 

the set {[V, ~][5: a = 1 ~ ~ E 1~}. As W ,~ .~, each such b permutes this set and 

so permutes the [V, Li]. Hence by the preceding paragraph, each b normalizes 

all [V, Li], whence /~ does as weU. But then /} normalizes {~ E W [ ~  ~ = 1, 

[V, ~] = [v, L1]}. However, because of the faithful action of W on V, this set is 

precisely 03(L~)#. Therefore/~ normalizes L1, contradiction. This proves the 

assertion. 

Further, if a~ • L~ is an involution, then since ~ is a transvection on V, 

Lemma 3.2 implies that I[a,,Dll = 3, so 03(L,) = [a,,D]. Therefore Li = 

(~i, [ai,/)]) is normalized by Cb(ai ) mad hence b y / )  = [ai,/)]C/~(ai). We have 

proved that Li , a / ) j  = ~" (assuming (3.1)). 

Since £i ~ Ea, if follows that X = if" × 1~1, where ff'l = C)?(I?V). In 

particular, as .4 < IV, A < Z(2F). Moreover, by induction, (.2. b) = (.dX) is the 

direct product of some of the Li, say i,l × .-. × Lt. 

Furthermore, if B is any other element of Ao(T), we have similarly that 

(/~D) = l~/1 x . . .  x iris, where all 2~/i ---- Ea and 2lT/i (7 T acts as a transvection 

on V. Since [A, B] = 1, it follows that each -~i either lies in IYV~ or is an L j,  

1 < j < t. Hence (.~b)(/~b) is a direct product satisfying all the conclusions of 

the theorem and is a direct factor of X. 

By (3.1), T = J is generated by the set of all A • A0(T). Hence repeating 

the above procedure for every pair of elements of Ao(T) yields the conclusion 

of the proposition. Thus it remains to treat the case in which (3.1) fails. Since 

J -- (.4]A • A(T)), it follows that J = T = A for some A E A(T), whence 

g" = DA. 

By the Thompson dihedral lemma [Th; p.409], there exists a subgroup D0 

of b and a decomposition .4/90 = / )~  × "'" ×/gn,  where/9i is dihedral of order 

2pi(pi an odd prime) and n = m(A). Set T ~ Di = (ai) and .~i = (?zjlj ¢ i). 

Fix i and set V1 = Cv(fti); by the A × B lemma, / ) i  acts faithflflly on 1/'1. Hence 

Cv(A i) > Cy(ft). Therefore if A i is the preimage in A of .~i, m(A~Cv(ft~)) > 
m(AiCv(A)) (since A i ~ V <_ A n V <_ Cv(.4)). But m(A i) = re(A) - 1 and so 

Bi = AiCv(A i) • A(T). I f n  > 1, we h a v e T =  A~2 z = B,/~z a n d B1 ,Bz  • 
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.A0(T), so (3.1) holds, contrary to assumption. We conclude that n = 1. 

Thus A = (a). But in this case Lemma 3.2 implies that ~ acts as a transvec- 

tion on V and yields the conclusion of the proposition. The proof is complete. 

Our next result is the elimination of certain possibilities for the components 

of ~'. 

PROPOSITION 3.5: Let L be a component o f f (  not centralized by J. Then the 

following hold: 

(i) /£ L E Chev(p) for some odd p, then also f. E Chev(2) (so L is an "am- 

biguous" group); and 

(ii) L ~ Sz(2"), (S)Us(2n), 3At, Jl ,  or Ly. 

We argue by contradiction and choose a counterexample with .~ of minimal 

order. Choose A E .A(T) such that [.~, L] ~ 1 mad, subject to this, so that A has 

minimal order. 

We first prove 

LEMMA 3.6: The following conditions hold: 

(i) L is A-invariant and f f  = LTI; 

(ii) [.zl, Z(L)] = 1; and 

(iii) A acts quadratically on V. 

Proo~ First, if if" is an .4-invariant subgroup of f(  such that W = E(17¢), 

O2(V¢') = 1, and [W, A] ¢ 1, we caaa apply Lemma 3.3 with A in the role of B 

there. With 1~ as defined there, we have 12¢ ~ 17V-, mad so either f(  = 1~.4 or 

else every component of 1~ satisfies the conclusions of the proposition, by our 

minimal choice. Hence so does every component of I,V not centralized by .4. 

Taking lrd = (LA}, we conclude that f (  = (LA)A, since L does not satisfy 

the conclusions of the proposition. Se t /~  = (La), so that R = F*(f().  
To prove (i), it suffices then to prove that A normalizes L - -  that i s , / (  = L. 

Suppose false and choose fi E A - N~i(L), and apply the first paragraph to 

17V = E(CR(a)). Since F*(f()  = /-/', CR(W ) = (2). Hence if [W,A] = 1, we 

would have A = (a), and Lemma 3.2(ii3) would be violated. Thus [W, A] ¢ 1, 
so the first paragraph yields that L, a central extension of a component of l~, 

satisfies the conclusion of the proposition, or else L - 3A7 and the components 

of if" are isomorphic to At. 
However, in the latter case a inverts Z(L),  because ~v--~ a defines a surjee- 

tion from L to a component of if'. The same holds for may a E A - NA(£,), which 
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implies that IA IN; t (L ) I  = 2, whence / (  = LL ~, so m(-4) = 1 + m(NA(L)) < 

1 + m2(Aut(L)) = 4. Hence m([V, fi]) _< 4 by Lemma 3.1. On the other hand, 

choosing 15 E Syls(L), we have 15 ~ 31+2, so Y1 = 1515a is a-invariant and isomor- 

phic to 3 TM. Hence m([V, a]) > 9 by Lemma 3.2(v), contradiction. This proves 

(i). 
Next, suppose that (ii) fails. Then there is a hyperplane/~ of .4 and a 

subgroup I2 of Cz(L) (/~) of prime order such that I 7" = [Y, A]. Now A12 centralizes 

/~, so normalizes Cv(/~). But since L = F '(X') ,  our choice of ,g, allows us to 

apply Lemma 3.1(v). I f /~  # 1, we conclude that ¢i centralizes Cv(/~), and 

so Y" = [Y, A] does as well. Hence by the A × B lemma, Y" centralizes V, a 

contradiction. Thus /~ = 1, so by Lemmas 3.10) and 3.2(ii), A, _< Ov2(X'). 

Hence [A, L] = 1, contradiction. 

Thus (ii) holds, and since (iii) is immediate from Lemma 3.1(v), the lemma 

follows. 

We can now prove 

LEMMA 3.7: If  L is of Lie type of odd characteristic, then L ~- 3U4(3) or 

[3 x 3]U4(3). 

Proof: If [fi,] > 2, then because of the quadratic action of Lemma 3.6(iii), the 

lemma follows from Theorem 1.2. Thus we can assume ft. = (~) ~ Z2, so that 

induces a transvection on V. We shall argue in this case that X contains a four- 

group acting quadratically on V, so that the desired conclusion will again follow 

from Theorem 1.2. By Glauberman's Z*-theorem [G12] there is an J~-conjugate 

of a such that J~ = (a, b) -~ E4. Since b is conjugate to a, likewise b acts as 

a t ransvectionon V. Set V1 = [V,a] and V2 = [V,b], so that V1 ~ 1/2 ~ Z2 

and /~  = (a,b) centralizes V/VIV2. Thus IV, B] _< V~V2. But also Vl and 1/2 are 

each/}-invariant as /~ is abelian. Since each has order 2, /~ centralizes both, 

so [V,/},/~] = 1. Thus/~ is a quadratic four-group in its action on V, and the 

lemma is proved. 

We now eliminate this residual case (the argument is due to Aschbacher 

[As3; 10.71). 

LEMMA 3.8: L is not of Lie type of odd d~aracteristic. 

Proof." Suppose false and continue the preceding analysis. Then L ~ 3U4(3) or 

[3 x 3]U4(3) and by the choice of A, A N C ha.s maximal order among all elements 

A of A(T). Set 17 = Z(L), so that [Y, A] = 1 by Lemma 3.5. 
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Thus I 7" < Z(X). If I 2 ~ E9, then for some 1 9£ ~ E Y, Vo = Cv(~) • 1 

and [IT",V0] 9k 1. It follows that Vo<~X and CR(Vo ) = (fl), so V0 is 2-reduced 

and singular with F*(X/Cx(Vo)) ~- 3U4(3). This contradicts the minimality of 

X. Therefore, i_, ~ 3U4(3). Consequently, since Out(U4(3)) - Ds acts faithfully 

on the 3-part of the Schur multiplier of U,(3) (which is E9) by [GL; 7-8], and 

~" = LA, we must have I){ : E I _< 2. This implies that m(.~) _< 1 + m2(L), so 

m(2) < 5. 

Let W be a minimal L-invariant subgroup of V on which ~" acts nontrivially. 

Then W -- [W, Y] and W may be viewed as an irreducible F4L-module. Since 

~" _< i , 'NZ(L),  dimF4(W) is divisible by 3, and since ILl > [GL3(4)[, dimF4(W) >_ 

6. For any a e A #, m(Y/Cv(a)) < m(2)  < 5 by Lemma 3.1, so Cw(a) 9 £ 1, and 

then W = W" by irreducibility of W, as W N W" is L-invariant. 

If 2 = (+), then ~ acts as a transvection on W, whence [V, a] -~ Z2. But 17" 

leaves [W, a] invariant as + centralizes ~', so 17" centralizes [W, +]. Thus Cw(]") 9£ 

1, contrary to the irreducible action of L on W. Hence 1.~1 > 2 and so A CI L 9£ 1. 

But L has only one class of involutions [Co]. Hence we can choose ~ E A fl L 

such that a normalizes a 3-subgroup/5 of / ]  with ]7" < / 5  and P / Y  ~ 31+4 and 

inverting P / Y / + ( P / Y ) ;  namely, P l Y  = O3(/~) for an appropriate maximal 

parabolic subgroup H of L/17". 

Given the structure of [/5, a], Lemma 3.2(iv) yields now that k -- m([W, a]) 

> 2. However, as W is a vector space over F+, k must be even, whence k >_ 4. 

On the other hand, m(2)  < 5, so as Cw(A) < Cw(a), m(W/Cw(~)) = k < 

5 by Lemma 3.1, forcing k -- 4. But likewise rn(Cw(A)) is even, and again 

m(W/Cw(A))  <_ re(A) < 5, so as re(A) < 5, we conclude that m ( W / e w ( A ) )  -'- 

4, whence Cw(A) = Cw(~) and then m(f~) >_ 4. 

Finally, sett ing/~ = A C/L, we have m(/~) >_ 3 and as ~ was arbitrary in 

2 # N/], it follows that W0 = Cw(A) = Cw(b) for all b E /~#. Thus W0 is 

invariant under each CL(b ). But by [Co], each CL(b) is a maximal subgroup of 

L, and L has only one class of involutions and Sylow 2-center of order 2. Thus, 

CL(b) #- CL(b') for b 9£ b' f i /~#,  and so I, = (CL(b) [b E B#}. Therefore L leaves 

W0 invariant. Since 1 # W0 < W, this contradicts the irreducibility of L on W. 

The lemma follows. 

Similarly we prove (see [As3; §9]) 

LEMMA 3.9: L ~ 3A7. 
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Proo~ Suppose that L ~- 3A7. By Lem,na 3.6, Z(L) _< Z(X).  However, 

non-inner automorphisms of L invert Z(L). (A Sylow 3-subgroup D of L is 

nonabelian, since otherwise by Burnside transfer, z (L)  < L ~ N Z(NL(D)) = 1. 
Thus /)  is isomorphic to 31+2. We may take D/Z(L) = ((123),(456)), and 

then t = (12) normalizes/)  with [CD/z(L)(t)[ = 3, so t inverts Z(L).) Therefore 

-~ = L. Choose 5 E / i # .  

Since L has only one class of involutions, a normalizes a 31+2-subgroup 

b of L, centralizing Z(/))  and inverting D/Z(D). Set W = IV, Z(D)], so that 

Cw(Z(D)) = 1. Also W is )(-invariant. Hence by Lemma 3.2(iii), re(W) = 6r 

and m([V, h]) _> 2r. It follows now from Lemma 3.1 that m(.4) _> 2r. However, 

m(/i,) < m2(L) = 2, so r = 1 and consequently m(W) = 6. 

By [GL, 8-1], CaL(w)(Z(L)) ~ GL3(4), so L is a subgroup of GL3(4) and 

hence of SLa(4). However, ]SLa(4)[ = 813A7[, so if 3A7 _< SLa(4), it would 

follow that L3(4) _ As, so La(4) ~ As, which is not the case. 

We next prove 

LEMMA 3.10: L ~ S z ( 2 " )  or(S)U3(2"), u :> 2. 

Proo~ Suppose first that L ~ Sz(2"). Then Out(L) has odd order by [GL; 7-1], 

so m2(Aut(L)) = n. Therefore re(A) _ n and so m([V, hi) < n for any a E .4# 

by Lemma 3.1. On the other hand, if p is a primitive prime divisor of 22" + 1 

(which exists by Zsigmondy's theorem), then L has a strongly real element ~ of 

order p. Thus, since L has one class of involutions, we may take ~ to be inverted 

by a, and thus d(~) < 2n by Lemma 3.2(i). However, by choice of p, d(~) > 4n, 

contradiction. 

If L ~ (S)U3(2"), then Out(L) has cyclic Sylow 2-subgroups by [GL; 

7-1], and m2(L) = n, so re(A) _< n + 1. If A contains an involution a induc- 

ing a non-inner automorphism on L, then some conjugate of ~ is induced by 

an automorphism of F22, of order 2, so ~ inverts an element ~ of order p, a 

primitive prime divisor of 23" + 1. Using Lemmas 3.1 and 3.2 as above, we get 

m([V, a]) _< n + 1, so d(2) _< 2(n + 1), whereas d(2) = 6n, contradiction. Thus .4 

induces inner automorphisms on L, so m(.~) _ n. 

Let ~ E .'t#, so that re(IV, ~]) < n. Suppose first that n # 3 and let r be 

a primitive prime divisor of 2" + 1. Then the monomial subgroup of L contains 

a subgroup RI?¢, where/~ ~ E~2, W ~ E3, and I~ acts faithfully on/~.  Since 

L has one class of involutions,/~12¢" is generated by three conjugates al ,  a2, a~ of 
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a, and so IV: Cv(/~I~)[ < IV: N~=lCv(ai)[ < [[V,~][ a < 2 3". Hence/~, being 

of odd order, embeds in GL3,(2). But GLa,(2) has cyclic Sylow r-subgroups by 

[GL; 10.1], a contradiction. Thus n = 3. 

A similar argument works in this case, with /~ = Z9 x Z9 or Z9 x Za, 

according as Z(L) # 1 or Z(L) = 1. This time,/~1,~ r is again generated by three 

conjugates of a and so O 3 ( / ~  r) embeds in GLg(2). But Oa(/~l~) either contains 

Z9 x Z9 or is of maximal class and order 3 4 with a Z9 x Z3 subgroup. Since Sylow 

3-subgroups of GLg(2) are Z3 x (Z3 ~ Z3), we reach a contradiction in either case, 

and the lemma is proved. 

It thus remains to eliminate the sporadic cases. 

LEMMA 3 . 1 h  L~J1 or Ly. 

Proof: Suppose false. Then m(.4.) < 4, so m([V, al) _< 4 for any a C A# by 

Lemma 3.1. But L has only one class of involutions and so a inverts an element 

of L of order 11 or 37 by [Co]. Now d(~) > 10, so m([V, a]) > 5 by Lemma 

3.2(i), contradiction. 

This completes the proof of Proposition 3.5. 

Next we analyze failure of factorization for L2(2") and A2,+1. The conclu- 

sions are fundamental for the proof of Theorem A. Moreover, because L2 (4) =~ As, 

it is best to treat the linear rind alternating cases together. 

However, we first note that in [As3], Aschbacher analyzes the corresponding 

situation for alternating groups of arbitrary degree. His more general result 

makes for an easier induction argument, but to start the induction he requires 

knowledge of the basic F2-modules for As(~ L4(2)). By restricting ourselves to 

the odd degree case, we avoid the latter issue. 

We shall prove 

PROPOSITION 3.12: Assume that F*(X) = L ~ L2(2") or A2,+,,  n > 2. Set 

U = [V, L]. Let A 6 A(T) with A # 1. Then (A N C)U = (A N C)Y 6 A(T) and 

one of the following holds: 

(i) L - L2(2"), and 

(1) v / cu (L)  is a L2(2n)-module; 

(2) A, 6 SyI2(L); 

(3) m(U/Cu(i)) = n; 
(4) C v ( i )  is in the center of a Sylow 2-subgroup of the preimage of L in 

X; and 
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(5) S induces inner automorphisms on L; 

(ii) L ~ A2.+1,/~S = E2.+1, and 

(1) U is a naturM 5(-module; 

(2) v = u × 

(3) f(  = Lft and fl contains some ?t acting on L as a transposition; 

(4) ,] = (fin n 7'> ~ E2-; 

(5) I:il = I v :  Cv(A)l; 
(6) / f A  is minimal (subject to A # 1), then IAI = 2; and 
(7) c (cv(i)) = i ;  or 

(iii) L = )( ----- At, and 

(1) U -~ Els; 

(2) V = V x Cv(L); 

(3) A = J ~- E4 is a root four-subgroup of L; and 

(4) L permutes U # transitively. 

Remark: Following this proposition, we shall deal with the ambiguity L2(4) ~- 

Proof." We shall consider three cases and show that they lead to conclusions (i), 

(ii), (iii), respectively. 

Case 1. L ~ L2(2"), n > 2; and if n = 2, then .4 < L. 

First assume that A M L = 1. Then n > 3 by assumption, and A = (4) with 

inducing a field automorphism on L. Hence a inverts a subgroup of a Ca ' t an  

subgroup of order 2 "/2 + 1. By Lemma 3.2, 1.41 = 2 forces 2 "/2 + 1 = 3, so n = 2, 

contradiction. Thus A N L # 1. 

For a n y a E  A N L #  a i n v e r t s s o m e ~  E L o f o r d e r 2 " + l .  But d(~:) > 

2n by Zsigmondy's theorem, and so m([U, a]) > n by Lemma 3.2. Since A E 

A(T), it follows that m(~i) >_ m(V/Cw(A)) >_ m(U/Cu(A)) >_ m(U/Cu(a)) = 

m([U, 4]) > n. This forces 42, E Syl2(L ), so equality holds throughout, and hence 

re(A) = m(V/Cw(A)) = m(U/Cu(A)). Now (i2-i4) follow, and also (A N C)U E 

A(T) (see Lemma 3.1(ii)). Furthermore, Cw(¢i) = Cv(a) for all a E .zi#. 

Let /~ be a subgroup of Ai of order 4. Since Cw(A) = Cv(a) for all a E .4#, 

V has no free summand, as B-module. Let W be a nontrivial L-composition 

factor in V; then W has no free /~-sunmmnd. The module W, with scalars 

extended to the algebraic closure F2 of F2, is then a direct sum of nontrivial 

As as follows. If L satisfies the hypothesis of the proposition and L ~ As, we 

write L ~ L2(4) if conclusion (i) holds and L --- A5 if conclusion (ii) holds. I 
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(absolutely)  irreducible L-modules  with no f r e e / 3 - s u m m a n d .  But  by the Stein- 

berg  tensor  p roduc t  theorem [S; §12], every such irreducible module  has the form 

M = N " '  ® . . .  ® N ~ for some v > 1, where N is a na tu ra l  L-module  and 

a l , . . . ,  a r  are dist inct  au tomorph i sms  of F2- .  It follows tha t  r = 1, for otherwise 

we can t a k e / ~  to be genera ted  by root  elements  z(1) and x(t), where t ~' # t "2, 

and  calculate immedia te ly  tha t  M has a free /~-sunnnand. We conclude tha t  

M is a na tu ra l  module .  Hence also W is. In par t icular ,  m(W/Cw(A))  = n, so 

m(W/Cw(J,))  = m(V/Cv(A)) .  Thus  W is unique, and ( i l )  is immedia te .  

Finally, by (2), J = ft,, and so m(U/Cv(J))  = n. Since U < V < Z(C), 

Cu(J) < Z(J).  Thus  S centralizes Ct r ( J ) .  But  if S > ,f, then 5' would contain 

some 9 act ing on L as a field automorplf ism.  Then  9 also acts  on the na tu ra l  

module  U/Ctz(L) as a field au tonmrphism,  so acts freely on Ctl(-~) = Cu(J). 

This  is a contradict ion,  so 05) holds, thus complet ing the proof  in case 1. 

It  therefore remains  to consider the cases L = A2,+1, n > 3, and X = 

L.4 - Es,  which we t reat  s imultaneously by induction on n. In ei ther  case, 

~" < Eg,,+~. This  t ime we choose A E ,4(T) with .zi # 1 mad I¢il minimal .  

According as I~il = 2 or IAI > 2, we shall argue tha t  the conclusions of (ii) or 

(iii) hold. 

Cas  e. IAI = 2. 

First ,  wri te i i • = (a}, so tha t  by L e m m a  3.2, a induces a t ransvect ion  on 

V. If  a is the p roduc t  of k disjoint t ransposi t ions,  then a inverts a (2k + 1)-cycle 

in L, so by L e m m a  3.2, d(~) < 2, whence k = 1; i.e., a is a t ransposi t ion.  In 

par t i cu la r  X - ~ ] 2 n + l .  

Identify X with E a ,  where ft = {1, 2 , . . . ,  2n+1} ,  and assume tha t  a = (12). 

For any 62 C f~, write Eq, (respectively, Aq,) for the pointwise stabil izer of ~2 - 62 

in En  (respectively, Aa) .  If {1,2} C $ C ~2 and I~1 is odd,  then since .zi < E~,, 

induct ion applied to the pre image  of E~, gives tha t  V = [Aq,, V] × C v ( A , )  and 

[Aq,, V] is a na tu ra l  A , - m o d u l e .  By conjugation,  the same conclusion then holds 

for any 62 C f~ with 1621 odd. 

Let W be a nontr ivial  X-chief  factor  in V. We use the preceding conclusion 

to prove tha t  d im(W)  > 2,s. Indeed, if n = 2, then this is clear as I&l is divisible 

by 5. For larger n, wri te f~ = ~ U q22 with 16211 = 4 and 16221 = 2n - 3 >_ 3. 

Let  Y = O2(A~q) ~ E4. By embedding  A,~ in A~qu{~,) for some 0J E 622 and 

apply ing  the previous pa ragraph ,  we see tha t  W = W1 x 1412, where Y is free on 

W1 ~ E16 and Y centralizes W2. By the A x B l e m m a  A~, 2 acts fai thfully on 
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Cw(Y)  = Cw~ (Y) × W2. But Cw~ (Y) = Cw(Y)A  [W, Y] is A~,2-invariant , and of 

order 2, so A~,~ acts faithfully on Cw(Y)/Cw~ (Y). By the previous paragraph 

this module contains a copy of the natural A~,~-module. Hence dim(W2) = 

dim(Cw(Y)/Cw~(Y)) > 2n - 4, so dim(W) = dim(W1) + dim(W2) _> 2n, as 

claimed. 

On the other hand, there exist 2n conjugates ~ = 21,.. . ,a2,~ of ~ which 

generate .~, and such that ( a l , . . .  ,a2n- l )  = ~fl-{~} for some w E ~. As each 

~i is a transvection on V, dim(Cv(~fl_{,,})) _> dim(V) - (2n - 1) > 0. Thus 

~fl-{w} fixes some w E W #. Therefore t~ has 2n + 1 = left : ~fl-{w/I conjugates 

under X ,  and these are then permuted naturally by .~', so W is a homomorp~c  

image of the permutation module, and hence is a natural module. 

To establish (1) and (2), it now suffices to show that H ~ ()~, W) is trivial. 

For then, since ~ is a transvection, W is the only nontrivial X-chief factor in V, 

and by the trivial cohomology and the fact that W is self-dual, W has no nontriv- 

ial extensions by trivial modules, so it splits in V, yielding (1) and (2). To prove 

that  HI( .X,W)  is trivial, in turn, we consider an F2L-module W* containing 

W with codimension 1. There exist 3-cycles t l , . . . ,  t,~ which generate L (each 

moving two points fixed by all the preceding). We have [W*, ti] = [W, t/] ~ E4, 

so m(W*/Cw.(£,))  < ~'~i~=1 m(W*/Cw.({i))  = 2n. Hence Cw.(]-,) 7 6 1, so W* 

splits over W, the desired conclusion. Thus (ill) and (ii2) hold. 

Next, consider an arbitrary B E A(T) with /~ 76 1. I f /3  has r orbits on 

f~, then dim(Cv(/~)) = r - 1 since U is a natural )(-module. Since B E .A(T), 

m(JB) > m(V/Cv(JB)) = m(U/Cu(JB)) = 2n - (r - 1) = (2n + 1) - r. Thus 

Iftl _< m(/~) + ~, where t? is the number of orbits of /} .  But an orbit o f / 3  has 

order 2 ~ and the corresponding action group o f / )  has rank a for some a. Since 

the rank o f /~  is at most the sum of the ranks of the action groups, it follows 

that each a < 1 and hence that /} is generated by disjoint transpositions and 

equality holds, whence m(/))  = m(Y/Cv(JB)). This yields (ii3) mad (lib). Since 

the transpositions in T are pairwise disjoint and are permuted transitively by the 

normalizer of the group they generate, (ii4) follows as well. Furthermore, if b E B 

and b is a transposition, then b is a transvection on V, and IV : Cv(b)l = Ib[. 

Hence ICy(b) : Cv(B)I = IB : (b)h so (b)(B 0 C)Cv(b) • A(T),  proving (ii6). 

Finally, since U x Z2 is the permutation module (of dimension 2n + 1) for 

X,  it is clear that for may/it < X, C.~(Cu([-I)) is the intersection of the setwise 

stabilizers of the orbits of H. Since J is generated by n disjoint transpositions, 



248 D. GORENSTEIN AND R. LYONS Isr. J. Math. 

(iiT) follows, completing the proof in this case. 

C ~ e  S. IAI > 2. 
Suppose first that there is • C ~ with ]~1 odd, k~ invariant under 3, and 

not fixed pointwise by .4. We shall prove that 

]~1 = 5 or 7, A ~ E4, and .4 acts as a root four-group on 
(3.2) 

(i.e., has exactly one nontriviai orbit on ~). 

Indeed, let I 7" = ~,I, C Yl'n = X, so that I7" is A-invariant. Let )(1 = 

lYA and let X~ be the preimage of )(1 in X. Setting V~ = Cv(O2(f(~)) and 
5(1 = X~/Cx,(V~), we have by Lemma 3.3 that V~ is 2-reduced in X1 and 

F*(J[a) = O2(17") ~ A~,. By induction, the lemma holds for X~ and Va. In 

particular, A* = (A N Vx~ (1'1))V~ e hi(T). By the minimality of A, A* = 1 or 

.3,. But [2, V~] ~k 1, since otherwise 02(17") = [Y, A] would centralize V~, whence 

[O2(17"), V] = 1 by the A x B lemma, contradicting O2(17") ~ 1. Thus ~ # A, 

so A ' 7  = 1. But Cyq(V~) _> O~(X'a), so .4 N O~(J{~) = 1; i.e., .4 acts faithfully 

on I 7". Furthermore, if (ii) holds for X~, then by (ii6) and the minimality of ].4], 

]A] = 2, contradiction. Thus (i) or (iii) holds for X~, whence ]~I'] = 5 or 7 and .4 

acts as a root four-group on 17". This establishes (3.2). In particular, .4 has no 

orbit of length 2. 

We argue next that 

(3.3) Either 2n + 1 = 2 m + 1 for some m or 2n + 1 = 7. 

Suppose false, so that 2n + 1 _> 11 and 2n + 1 ~ 2 "  + 1. The orbits of 

are of sizes 1 and 2 ", for various 2" _< 2n. There thus exists a g/satisfying the 

above condition with [~] = 2" + 1 for some such a _> 1. The preceding analysis 

therefore yields that [2.[ = 4 and A has no orbit of length 2. But then since 

2n + 1 > 11, A stabilizes and acts nontrivially on some q/ C ~ with [~[ = 9, 

contradicting the previous paragraph. This proves (3.3). 

If 2n + 1 = 5, then by asstunption .~ = LA ~ Eh. Hence A has an orbit of 

length 2, a contradiction. 

If 2n + 1 = 7, we argue that (iii) holds. Since 3, has no orbit of length 2, it 

is a root four-group; in particular, A _< L. By [GL; 23-1], (.~, A~) = L for some 

6 ~,, and so L centralizes Cv(fi)NCv(fit) ~, of index _< 16 in V. Thus in V there 

is a unique nontrivial L-composition factor W, and ]W I = 16. But HI(f(,U) 
is trivial for U = W and its dual. (If N = N~(R),  /~ < X, R generated by a 
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3-cycle, then Cu(.R) = 1, so H i ( N ,  U) is trivial; since IX:  N[ is odd, H~(.~, U) 

is then trivial.) Therefore V = W x Cv(L). Then .~ acts faithfully on W, and 

since L4(2) ~ As contains no copy of ~7, -~ = L. Also as 32 • 5 divides [L[, L 

is transitive on W #. In addition, .4 is uniquely determined in :T as its only root 

four-subgroup, so A -- J.  Since [W[ -- 16, it follows that [V: Cv(fi*)[ -- 4 -- [.4[. 

Thus all parts of (iii) hold. 

We are left to treat the case 2n + 1 -- 2"* 4- 1, m _> 3, and proceed to derive 

a contradiction. Notice that every nontrivial L-composition factor W in V has 

rank greater than 2m. (If m = 3, L -~ A9 contains a Frobenius group of order 

9 .8 ,  so m2(W) _> 8; if m > 3, L contains (Z3) r, where r = [(2"* + 1)/3] > m, so 

m2(W) ~> 2r > 2m.) 

We claim that 

Either m(.4) = 2 or m; 

(3.4) Every orbit of A on ~ is trivial or regular; and 

If m(,4) = 2, then f_, ~ A9. 

Indeed, if .4 has an orbit of length 2"*, (3.4) is obvious. In the contrary 

case, we apply (3.2) with • equal to the union of a fixed point of A and a 

nontrivial .4-orbit to conclude that A ---- Ea and .4 acts as a root four-group on 

g2. Thus [@[ = 5. But then i f m  > 3, we can apply (3.2) to g21 C ~ o f s i z e 9  

to derive a contradiction. Thus m = 3 and 2n + 1 = 9. Furthermore, the same 

argument shows that ,4 acts as a root four-group (and hence regularly) on each 

of its nontrivial orbits. Thus all parts of (3.4) hold. 

Since m(,4) < m and re(W) > 2m, as shown above, £, ~ (A, A ~) for any 

6 -~ as [ V : Cv(,4)[ _< 2"*. However, if IA][ = 2"*, there is ~ 6 L such that 

(A, A ~) = L, which is a contradiction. 

To see that such a~l 5: exists, choose a E A# and let ~0 = {w}, i l l , . . - , f l s  

be the orbits of a on fl (so that s = 2 "*-~ and [f~[ = 2 for all i > 1). Let ~1 be 

a 3-cycle supported on fl0 U ~ .  Then a inverts ~ ,  so (.4, fi,*') > ( ~ ,  ft,). But .4 

permutes the set of ~i(1 < i < s) transitively and so some A-conjugate of xl is a 

3-cycle ~i supported on fl0 U fli. Then (A, A ~') >_ (~:~,..., ~s) = L, as asserted. 

We conclude that [fl,[ = 4 and L ~ A9. In this case we can find ~ ,  x2 ~ 

such that (A, Ar~,fi, ~)  = L. (If ,~, is a root four-group supported on fix, choose 

the ~ so that ~ ~ ~ has one element m~d f~ = ~ U ~ '  U f ~ .  If A has orbits 

~ 0 U ~  U ~  with [f~[ = [f~[ = 4, choose ~i so that ~iU f~ '  = f~0 U f~i.) Thus ~, 
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centralizes Cv(A) N Cv(.4) ~1 N Cv(ft) ~ .  But IV : Cv(ft)[ _< 4, so any nontrivial 

L-composition factor in V has order _< 2 6, agRin a contradiction. Thus (iii) holds 

in case 3, and the proposition is proved. 

Finally we prove 

PROPOSITION 3.13: I f F * ( X )  = L, and L/Z(L) "~ La(2") or Sp4(2")', then no 

element o fT  maps to a graph or graph-field automorphism in Out(L);  that is, the 

image o f T  in Out(L) acts trivially on the Dynkin diagram of L, or equivalently, 

T normalizes all parabolic subgroups of L containing T N L.. 

We assume false and let t E T induce such an automorphism on L. We first 

prove 

LEMMA 3.14: t ~ J .  

Proof." If false, we could take t E A for some A E A(T). Choose such an A with 

IA] minimal. Set L1 = O3(CL(t-)), )(1 = L12, a~d let X1 be the preimage of 

X1 in X,  V1 = Cv(O2(fQ)), C1 = Cx,(V1), and -Y1 = X1/C1. As usual, V1 is 

2-reduced in X1. If L = (S)L3(2n), then L~ ~- L2(2 n) or (S)U3(2"/2), while if 

L/z (L)  ~ Sp4(2")', then L~ ~ Sz(2") (or Dl0 if n = 1). (Given the structure 

of Out(L) [GL, 7-1], one can obtain a list of involutions in Aut(L) - Inn(L) 

and their centralizers by Lang's theorem and simple calculations; see [AS], for 

example.) In any case, CA~t(L)(L1) ~ Z2, so CRI(L1 ) = (t-)(Z(L)NX1). Clearly 

F*(X1) = F*(L1). 
If .4 # 1, we conclude by Propositions 3.12 and 3.5(ii) that A* = 

(A N C~)V~ E .A(T). Since t E A*, aa~d A ---~ _< ,4, our choice of A implies that 

3, = A"-7. But A* = 1, so A = 1, contradiction. Thus, A = 1, so 3, = (t-). Then 

by Lemma 3.2, every element ~ of L# of odd order inverted by t has order 3. 

However, t inverts an element of odd prime order r, where (1) if L1 ~ L2(2n), r 

divides 2 a" - 1, but not [L2(2n)l; (2) if L1 = U3(2n/2), r divides 2 3"/2 - 1, but 

not 2" - 1; (3) if L/Z(L) ~ Sp4(2n) ', r = 5. This contradiction establishes the 

lemma. 

Similarly we prove 

LEMMA 3.15: IrA E A(T) mad a E A, then a does not induce a nontrivial field 

automorphism on L. 

Proof: Indeed, if false, then since h acts freely on the lower central factors 

of T, we could take t to centralize ~ by a Frattini-type argument. We form 
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f(1 = CL(5)(t, a) and apply induction to the preimage Xa of-'~1 in X and to 

1/1 = Cv(O2(fQ)). Now t induces a graph automorphism on CL(a), so we reach 

a contradiction by induction unless .4 = (~). In that case we again easily find an 

element i of L of odd order > 3 inverted by ~, contradiction. 

We shall reduce to the case L/Z(L)  ~ Sp4(2)'. Thus in Lemmas 3.16-3.18, 

we assume 

(3.5) L/Z(L)  ~ Sp4(2)'. 

Then the preceding analysis yields that J < L. We let 151 and/52 be the 

maximal parabolic subgroups of/~ containing T N L, set Qi = O2(/5i), and let 

Ki, where/~i is a Levi factor of/5i, i = 1, 2. Each Li = L2(2n), and J </5i. 

We immediately obtain 

LEMMA 3.16: J ~ Qi for both i = 1 and 2. 

Proof: Suppose J _< Qi for some i. Then J = J~ _< ~)iNQ~ = Qa NQ2. 

But then if Qi is the preimage of Qi in T, J = J(Qi)  and so by the Frattini 

argument J,~ (NR(QI),Nx(Q2)),  so L normalizes ] .  As L = F * ( X ) i s  simple 

and [J, L ] ¢  1, this is a contradiction. 

Next, set 1//= Cv(¢~i), so that Li acts on 1//, i = 1, 2. We prove 

LEMMA 3.17: Either Li acts trivially on Vi or Li has a unique nontrivied compo- 

sition factor on Vi, which is a natural Li-module, i = 1, 2 (if Li "~ Za this means 

that [Vi, Li] ~ E4). 

Proof: We have Cp~(LiQI/Qi) <_ 022,(/5i), so J acts nontrivially on LiO, i/Oi, 

i = 1,2. But Cx(Vi) contains C and covers Qi. If it covers Li(0,, then Li 

acts trivially on Vi and the lemma holds. Otherwise, since Li is simple and 

Cp~(LiQi/Qi)/Oi has o d d  order ,  we have 02(PdCp,(V~)) = 1; i.e., V~ is 2- 

reduced in the preimage of/3/ in X. Moreover, 1// is singular since [J, Li] ~ Q,i. 

Hence in this case the lemma follows fl'om Proposition 3.12(i) as J <_/5~. 

We now contradict (3.5), proving 

LEMMA 3.18: L/Z(L)  ~- Sp4(2)'. 

Proof." Suppose false, so that L ~ (S)La(2n), n _> 1, or Sp4(2n), n >_ 2. Set 

Vo = Cv(L) and let I?V = W/Vo be an L-composition factor in V. Since L is 

perfect, 1~ is not a trivial L-module. Set I~i = CW(O~ ) = Wi/Vo, i = 1, 2. Then 

(3.6) Every Li-composition factor in I)di is trivial or a natural Li-module. 
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Indeed, setting 1~ = Cw(Q,I), we have just seen this for composition factors in ~ .  

Furthermore, since [Q/, W/] < Vo and [Q/, V0] = 1 by construction, commutation 

gives a pairing Q,i × W~ ---+ V0; as Y /=  Cw((~i), this gives an embedding of Wi/Yi 
into Horn(Q/, V0), preserving the action of L/. Since all/ , /-composition factors 

of Qi are trivial or natural, the same holds for Wi/Yi. Thus (3.6) holds. 

We shall argue on the basis of (3.6) and the existence of 5 that if we put 

l~: = l~  + l~ ra, then 

(3.7) m(I?V1/Ccc,(A)) > 2n or 3n, according as L ~ (S)La(2") or Sp4(2n). 

Since .4 < L, however, m(fi,) < re(L) = 2n or 3n. Thus m(V/Cv(A)) > 
m(I?V1/C¢¢~ (A)) > m(.4), which will contradict A • A(T). 

To see that (3.6) implies (3.7), a purely module-theoretic assertion about 

/`, we temporarily replace L for convenience by its simply connected version 

and first recall the representation theory o f / `  over the algebraic closure F'2 IS; 

§12]. There are four basic F2L-modules, and the irreducible F2L-modules are 

the modules ~ ®iM~ , the tensor product over Gal(F2, /F2) ,  with each M/a  basic 

module. Furthermore, three of the basic modules are (a) the trivial module, 

(b) M (a natural module), and (c) M'  (an appropriate conjugate of M under a 

graph automorphism of / ` ) ,  since the high weights for these modules lie in the 

restricted range. Let N = M ® M  I. In the La(2 n) case, M and M'  are dual, and 

so N ~- End~2 (M) = No @ N~, where No is the adjoint module (of dimension 

8) and N~ is trivial. In the Sp4(2") case, N is irreducible (indeed, its restriction 

to Sp4(2) is the Steinberg module) and we set No = N. In either case, one 

calculates that the high weight of N0 lies in the restricted range, so No is the 

fourth basic module. 

For any F2L-module U, write U (0 for the F2Li-module Cu((~i), i = 1, 2. 
Clearly (U, ® U2) (') contains U~/) ® U~/). We have 

(3.s) 
If every irreducible constituent of U (i) is trivial or natural, for both 

i = 1 and 2, then every composition factor of U is trivial, or an 

algebraic conjugate of M, M' ,  No, orM ~' ® M'  for some a E Gal(f;'2) #.  

Indeed, clearly M (i) is natural for one i, and trivial for the other, and 

vice versa for (M')  (0. Then since N (0 D M (1) @ (M')  (0, N (0 and hence No( 0 

contains a natural module for both i = 1 and i = 2. Hence if U1 = @j('Mj) °~ is 
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a composition factor of U, then except for the cases of (3.8), U~ i) will contain, 

for some i, a submodule ®j(I~)~' ,  where each Yj is natural  or trivial and at 

least two Yj are natural. By the Steinberg tensor product theorem again, this 

submodule is irreducible, but not a natural module, contrary to the assumption 

of (3.6). This establishes (3.8). 

Now we prove (3.7). Let U be the module 1~ with scalars extended to ~'2. 

Because of (3.6), U satisfies the conclusion of (3.8). On the other hand, since 1?¢ 

is an irreducible F2L-module, U contains the direct sum of the distinct algebraic 

conjugates of an irreducible U1. In each case of (3.8), Ua clearly has exactly n 

such conjugates. 

If U1 = No or M a ® M  t, then for any involution b E .4#, dim(U1/Cut(b)) >_ 
3 or 5 (according as L = (S)L3(2 n) or Sp4(2n)) by a direct calculation of Jordan 

block structure of the tensor product of two involutions. Hence m(l~r/Ccc(b)) >_ 
3n or 5n, so (3.7) holds in this case. 

Otherwise, we may assume without loss that U1 = M. Thus I~ r ~ l~  a, 

so l~rl = 1~ ~ 1~ ra, and the extension of l~ r~ to ~'2 is the direct sum of the 

n conjugates of U~ = M' .  For any involution b E L, either dim(U1/Cvt(b)) 
or dim(UI/CvI(b)) is at least 2 in the case of Sp4(2"), and both are of course 

positive in any case. Hence m(I~rl/Cwl (b)) > 2n or 3n according to the type of 

L, so m(I?V,/Ccvt(A)) >_ 2n or 3n. If (3.7) failed, we would thus have re(A) = 2n 

or 3n, respectively, as A E .A(T), m~d, interchanging l~ and 14 r~ if necessary, 

dim(Ui/Cu,(A)) = 1, and dim(UI/Cvi(A)) = 1 or 2, respectively. But since U1 

is a natural module, the first equation and the size of ,4 force L -~ SL3(2") and fi, 

to be the full stabilizer of the chain VI > Cv~(fl) > 1. But then dimCv,( ,4)  = 1, 

contradiction. This proves (3.7) and completes the proof of the lemma. 

LEMMA 3.19: L ~t Sp4(2)'. 

Proof." Otherwise we have X" = L0(t~, where [X : L0[ = 2 and 1,0 ~ A6 or ~6- 

Moreover, by Lemma 3.15, J _< L0. If L0 ~ ~6(~ Sp4(2)), we may repeat the 

argument of Lemma 3.18 to reach a contradiction. Thus L0 = L ~ As -~ L2(9). 

Again let A E .A(T) with .4 ¢ 1, and choose a E A] #. Then m(V/Cv(a)) <_ 
m(ft) _< 2, and there are conjugates al,a~ of a such that L = (a, al ,a2).  Hence 

m(V/Cv(L))  _< 6. On the other hand, )(  contains a Frobenius group of order 

9 .8  and so re(V) >_ 8 as V is a faithfid )(-module. This contradiction proves the 

lemma. 
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We now complete the proof of the proposition. By the preceding two lem- 

mrs, L ~ 3A6. Choose A E A(T) with A ¢ 1 and .4 minimal. The argument 

of Lemma 3.6(ii) may be repeated to give [.4, Z(L)] -- 1. On the other hand, 

by Lemma 3.15, f~L/Z(L) ~- A6 or E6, m~d in the latter case just as in Lemma 

3.9, [.4, Z(L)] ¢ 1, contradiction. Therefore .4 _< L. Since every involution of 

inverts an element of order 5, 1.41 > 2 by Lemma 3.2(ii). Hence A ~ E4. Thus 

and At are the two E4-subgroups of T N L, and so are not L-conjugate. But 

then there exists ~ E L such that L = (A, .4~). (Indeed for any .~ E L, (-4,-4~-) 

must contain a Sylow 2-subgroup of L, so if (.4, ~t-~) < L, then (A, A~) -~ Ds 

or ~4, and as .4 and .4~ are not conjugate, one normalizes the other. Hence 

we need only choose g so that A~ 2~ NL(A).) Finally, as [V/Cv(A)[ <_ [.4[ = 4, 

we have [V/Cv(L)[ <_ 16. But as in Lemnm 3.9, [[V, Z(L)][ >_ 26, contradiction. 

This completes the proof of the proposition. 

4. C o m p o n e n t s  invariant under the B a u m a n n  subgroup 

Again X is a K-group with F*(X) = 02(X) having a singular 2-reduced setup, 

with accompanying notation as previously specified. In particular, 

S = CT(~21(Z(J))) is the Banmann subgroup of T. Our main result here is 

the following: 

PROPOSITION 4.1: Let I, be a component o f f (  not centralized by J. g L ~- 

L2(2n), Sz(2"), (S)Ua(2"), A2,+~(n >_ 2), or 3A7, then S normalizes L and 

£ -~ L2(2") or A2,+1. 

The last assertion is immediate by Proposition 3.5, so we need only prove 

that S normalizes L. We suppose false and choose a counterexample with X of 

minimal order. 

We first prove 

LEMMA 4.2: X" = (Li")T. 

Proo~ Otherwise X ~ (L,T). We then apply Lemma 3.3 to l~ = (L~'), with 

/~ = T and conclude by the minimality of X that l~ -~ 1~1 and S normalizes L, 

where fQ = (L,T), and )(1 is the factor group of f(1 defined in Lemma 3.3. But 

then it is immediate that S normalizes L, contrary to assumption. The lemma 

follows. 

Next choose A E .A(T) as follows. If ] does not normalize L, choose 

.4 ~ N~(L); while if J normalizes L, choose A so that .4 ¢ 1 and A is minimal 
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subject to this condition. Replacing L by a 2~-conjugate, we may assume that 

[L, A] ¢ 1. Again by the minimality of ){ and Lemma 3.3, we conclude 

LEMMA 4.3: Either J normalizes L or f( = (LA)fi.. 

Set .2,1 = NA(L ). We next prove 

LEMMA 4 . 4 : , 4 1  does not centralize L. 

Proof: Indeed, otherwise -41 < .4 since [A,L] ¢ 1, so J does not r/ormalize L. 

Hence by the preceding lemma, )( = / ~ A ,  where/~ = (LA). Thus All = CA(L ) = 
C~( /~ )  = 1. By Lemma 3.2(ii3), [.4[ > 2. 

Let ~ • .g.# and set I = E(CR(h)). Then .4/(~) permutes faithfully the 

components of i .  Applying Lemma 3.3 to 17V = i and /~  = .4, we conclude by 

the minimaiity of X that A normalizes all components of l~ ~ l~ r (where Xl 
is as defined in Lemma 3.3). Therefore .4 normalizes all components of lye', so 

.4/(fi) = 1, contradicting IA[ > 2, and the lemma is proved. 

We next prove 

LEMMA 4.5: ff normalizes L. 

Proof." Suppose false, in which case again X" -- /~'.4, where /£ -- (LA). By 

our choice of .4, ~," > L, so if we write ,4 -- All x fi-2, then -42 ~t 1 and ,42 

transitively permutes the components of/~'. Thus T = E(CK(A2)) is a diagonal 

o f / ( ,  so _f -- L or L/Z(L). Furthermore, as AI does not centralize L, it does 

not centralize _T. We set X'I = -TA, R = O2()~1), V1 = Cv(R), and let X1 be the 

preimage of )(1 in X, C1 -- Cx~(V1), and )(1 = X1/C1, so that V1 is 2-reduced 

and singular in X1 by Lemma 3.3 and _T = F*()(1 ) ~ -f. By minimality of X, 

i ="~ L "~= L2(2") or A2n+l. 

Thus Proposition 3.12 applies to XI and V1, so in either case V1 has a 

unique nontrivial/~,_Lcomposition factor V/Uo. In fact, we can take V = [V1, 

and U0 = Cu(i) .  (By convention, when i -- L2(4) - As, we write i ~ Lz(4) or 

A~ to indicate the type of the module U/Uo.) Moreover, we have by Proposition 

3.12: 

(4.1) U(A fq C1) • A(T). 

We set A* = U(A n Ca). 
Returning now to ..~', we have A* = A ¢q C'1 as U _< r~ = 1. By our minimal 

choice of .4, either A--;" = .4 or A - '7 = 1. However, as .t - i and .4" _< C1 = 1, 
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[A-';-, I] = 1; that is, ~ ~ CA(I ) = ft2CA([x" ). But -41 does not centralize K as 

/~ = (L A) and/ iq  does not centralize L by Lemma 4.4, so ~ < / t .  This forces 

A---;- = 1. But -~,2 -< A--;- by definition of .?, so A2 = 1. Therefore .4 normalizes L, 

contrary to the fact t h a t / (  > L, and the proof is complete. 

Thus//-1 = ji, and [L, A,] = L as fi-I does not centralize ]_,. By Proposition 

3.5, L -- L2(2") or A2n+l. Applying Lemma 3.3 and Proposition 3.12 now as 

in the preceding lemma, with L,4 as ~'1, and L, in the role of/~, and defining 

U = [L, V~], again (4.1) holds. Set A* = U(AOCI) E A(T). The same argument 

as there shows that A* = 1. Thus V centralizes A*, and it follows that V < A*. 

But L and A normalize U, whence [A,V] < [A,U(ANCI)] <_ U. Since £ = [L,A], 

our argument therefore yields: 

LEMMA 4.6: L, centralizes Y /V ,  where U = [V1, L] = [V, L]. 

Again we put [70 = Cv(L), so that U/Uo is the unique nontrivial L- 

composition factor within V. Also as J normalizes ]_,, J normalizes both U 

and U0. 

We next prove 

LEMMA 4.7: U D E ~/.7o. 

Proo~ Recall that E = f / l (Z(J) ) .  If L ~ A2n+I, then U0 = 1 by Proposition 

3.12. But Cu(J) ~ 1 as J normalizes U, and as U _< A* _< J ,  1 ¢ Cu(J) <_ E, 
so the lemma holds in this case. Hence we can assume that L ~ L2(2"). 

Set To = T N L and Zo = Cv(To). Then by Proposition 3.12, .4 -- T0 

(recall that  £ = F*(X1)) and Cu(To) ~ Uo. Trivially Cu(f~) = Cu(A) and 

Cv(To) -- Cv(To) = Zo, so we conclude that Cu(A) = Zo ~ Uo. Furthermore, 

the same conclusion holds if we replace A by any B E A(T) for which [/3, £] ¢ 1. 

(Notice that  although the definition of U, made with reference to X1, depends a 

priori on A, V = [V, L] is independent of A.) 

On the other hand, for any B • A(T) for which [B, L] = 1, we have [/}, U] _< 

U0 by the irreducibility of £ on U/Uo, so [B, U, L] = 1, whence IV, L, B] -- 1 by 

the three subgroups lemma. But V = [V, L], so U = [V, L]. Thus [/}, U] = 1. It 

follows that [B, Z0] = 1. Hence Z0 centralizes J = (AIA • A(T)), so Z0 _< E, 

and the lemma holds in this case as well. 

Now we can quickly complete the proof. Since we are arguing by contra- 

diction, there is :~ • ,~ such that L ~ £~. Then [L, L ~] --- 1, so ~,~ normalizes 
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U = [V, £] and Uo = Cv(L),  and [L ~, U] < Uo. Using the three subgroups lemma 

as in the preceding lemma, we conclude that [L *, U] = 1. Likewise [L, V ~] = 1. 

Therefore U gl U ~ < Cv(i , )  = Uo. But U N E < U N U *, so by the preceding 

lemma U 13 U * :g U0. This is a contradiction, and the proposition is proved. 

We also need the following variation of the proposition. 

LEMMA 4.8: / f I ,  is a component of X ,  and L "~- L3(2") or Sp4(2")', then either 

normalizes L or L centralizes Z f3 V. 

Proof: Suppose false, and let X be a counterexample with IX[ minimal. Choose 

A E A(T)  wi th .4  2~ NR(£'). Set /~ = (L A) and){0 -= /~A, let X0 be the 

preimage of )(0 in X and let To = T O X0, V0 = Cv(O2(f(o)), so that as usual 

V0 is 2-reduced in X0, and F*(Jf0) = / (  = (L ~i) -~/~, where X0 = Xo/Cxo(Vo). 

Since ){0 = K A ,  clearly To E Syl2(X0 ), and setting Z0 = f~l(Z(To)), we have 

Z 13 V < Z0 13 V0, so [L, Z0 f3 170] ~ 1. Hence X0 is also a counterexample, so 

X = X0 by the minimality of X. Thus 3{ =/~.4.  

Set A1 = NA(L) and wr i t eA = A1 xA2.  For any A0 < A2, we can set 

io = E(CR(Ao))  and fie1 = IoA. Then, as usual, we obtain a 2-reduced 111 in 

the preimage Xl of ){1 in X, with 2(1 = XI/Cx~(V1)  = Io.4 and f * ( f f l )  = 

I0. If [A2[ > 2, we can take A0 to be a hyperplane of A2. Then .4 permutes 

nontrivially the components of I0, each of which is isomorphic to L, contradicting 

the minimality of X. Hence [A2[ = 2. Now we take A0 = A2 and put I = i0, so 

that  I =" L. 

By Proposition 3.13, no element of A1 induces a graph or graph-field auto- 

morphlsm on I. Let 2t5/1 and _~r2 he the maximal parabolic subgroups of ~, con- 
2 t  - taining T13L, and set/5i = O (Mi), i = 1, 2. It follows that A1 normalizes/51 and 

/52. Set/~i = (/5/A,), i = 1,2, so that / i"  = (/~1,R2). Since L does not centralize 

Z N V and L < / ~ ,  some/~/does not centralize Z fq V, i = 1 or 2. For simplicity, 

set /~ = R / fo r  such a value of i, and put Y = Cv( 02( [l) ), [-I = (R, ~') = (R, A), 

and let H be the preimage of H in X. Now/~ = (Tf)/~)O2(/~) so O2(/~) does not 

centralize Z13V and in particular does not centralize Y. But O2(/~) = 02(f-I) and 

O2(/~)O2(/~)/O2(/~) is the unique chief factor of/~ which is not a 2-group. Hence 

CR(Y)  = O2(/~). It follows that Y is 2-reduced in H, and in H = H / C H ( Y ) ,  fi2 

interchanges the two/i-conjugates of/5/whose direct product is/~. 

If n > 1, then as /5/ - L~(2"), this contradicts Proposition 4.1. Hence 

n = 1, so ){ ~ L3(2) t Z2 or X is isonmrl)hic to a subgroup of ~6 ~ Z2 containing 
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As I Z2. Accordingly, m(.4) < 3 or m(,'~) < 4. 

Let W be a chief factor of X in V on which/~ acts nontrivially. Set -42 = (a). 

If W1 = Cw(L) # 1, then as X leaves invariant both WIW~(< W) and WI f-IW~, 
it follows that W1 N W~ = 1 and that W = W1 @ W~. Also W~ = Cw(L ~) is 

L-invariant as /~ centralizes L a, so W1 a is a faithful L-module. Now m(.4) > 

m(V/Cv(A)) > m(W/Cw(A)) = m(W/Cwo(A~)), where W0 = Cw(~t) is a diag- 

onal of w = wl  However, clearly m ( W / W o )  = m ( W o )  = m ( W x )  >__ 3 or 

4; i.e., m(W/Wo) >_ m(ft), and so we nmst have Cw0(-4~) = W0. Thus -41 = 1, 

against Lemma 3.2. We conclude that W1 = 1. 

Suppose first that .4 f3 R # 1 and let b E fi- N /~# ,  so that b = /~lb~ 

with bl E L#.  Let l~ = W ®r'2 ~'2 mad let Y be a simple K-submodule of 

17d. Then dim~-,([Y,/J]) _< dim~.,([W,b]) = m([W,/~]) _< m(V/Cv(fi,)) < 3 or 

4, respectively. On the other hand, since W1 = 1, Cy(L) = 1, and similarly 

Cy(]-, a) = 1, so Y = Ya ®t'~ Y2, where Y1 and Y2 are nontrivial modules for L and 

L a, respectively (see [S, Lemma 68]). Clearly dim~.2(l~ ) > 3 or 4, respectively, 

and a direct calculation with Jordan blocks shows that dim~.2([Y ,/~]) > 4 or 6, 

respectively, a contradiction. Therefore .4 f'l/~ = 1, whence (by Lemma 3.2) 

IAI = 4 and £ ~ A~. 

In this remaining case one easily finds four conjugates/}1,/}~,/~3,/~4 of 

generating X. Hence Cw(( /~ , , /~ ,  B3, B,)) = 1, so re(W) < 4m(W/Cw(d,)) < 
4re(d) = 8. However, re(W) > 4 ~ = 16 since dim(Y~) > 4. This contradiction 

completes the proof of the lemma. 

5. Generation of simple K-groups 

To carry out an inductive argument we need information about generation of 

certain simple K-groups by subgroups containing a Sylow 2-subgroup. 

To state the result we need a definition. Let K be a simple K-group, T a 

2-subgroup of Aut(K),  and Y a T-invariant subgroup of Aut(K). Let A/'(Y, T) 
be the set of T-invariant subgroups N of Y such that 

(1) O(N) = 1; ham 

(2) No component of N is isomorphic to L2(2") or A2-+I, n > 2. 

Set N(Y, T) = (N I N E A/'(Y, T)). We shall prove 

PROPOSITION 5.1: Let K be a shnple K-group m~d T a 2-subgroup of Aut(K).  

Then K = N(K, T) in each of tile following cases: 
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(1) K Ch  (2) and K is not isomorphic to one g' oups 

L3(2"), or Sp,(2")'; 
(2) K ~ L3(2") or Sp4(2n) ' and the image ofT in Out(K)  acts trivially on the 

Dynkln diagram of K; 

(3)  K ~ A2,,, n _> 4; or 

(4) K E Spor - {J,, Ly}. 

Proof." Without loss, we may replace T by TT*, where T* is a T-invariant Sylow 

2-subgroup of K (this only shrinks N(K, T)) and assume T A K E  Syl2(K ). In (1) 

and (2), we consider the set P of parabolic subgroups P of K such that P < K 

and P is T-invariant. For any P E P, F*(NK(P)) = 02(P) (see [GL; 13-141), 

and so NK(P) <_ N(K, T). But in (1), since K is not one of the listed exceptional 

groups, the set of nodes of the Dynkin diagrmn A of K is the union of proper 

subsets invariant under Aut(A) and so K is generated by the corresponding 

parabolics in P ,  as required. 

In (2), the hypothesis implies that T normalizes all parabolics of K con- 

talning T (3 K and so again K = ( P [ P  E P)  = N(K, T). 

In (3) and (4), set Y = Au t (g ) ,  so that [Y:  g I < 2. Without loss, we 

may take T E Syl2(Y). Now if N E Af(Y, T), then clearly N n K E Af(K, T), 

and as IN:  N [3 g [  < 2 and g n T e Syl2(N), also N = (g  f3 T)(N f3 g).  Thus 

N(Y, T) <_ TN(K, T). Clearly also g ( g ,  T) <_ N(Y, T) so N(Y, T) = g ( g ,  T)T. 

Hence it suffices to show that Y = N(Y, T), for then K < N(K, T)T, whence 

g = g ( g ,  T). 

If K = A2,, then Y = ~]2,, as n > 4. Let 2"* be the highest power of 2 with 

2 'n < 2n. There is a subgroup N1 ~- E ,  x Eb of Y which is T-invariant, where 

a = 2 m and a + b = 2n; moreover, N1T is maximal in Y. Since a and b are even, 

O(NI) = 1 and NIT E Af(Y,T). Hence either N(Y,T) = Y or N(Y,T) = NIT. 

Thus we can assume that the latter holds. 

Furthermore, there is N2 -~ E2- • En, where N2 is the centralizer in Y of 

an involution without fixed points on 2n letters. Thus F*(N2) = 02(N2). As 

[Y : N2[is odd, we may choose N2 so that T < N2, whence N2 E Af(Y, T). Clearly 

N2 is transitive on 2n letters and the only nontrivial system of imprimitivity 

for N~ consists of the n orbits of 02(N2). On the other hand, NIT either is 

intransitive (if a # b) or is transitive with the only system of imprimitivity 

consisting of two sets of size a (if a = b). Since n > 2 it follows that N2 ~ N1T, 

so Y = (NIT, N2) = N(Y,T) in this case as well. 
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Finally, assume that K E Spor-  {Jl, Ly}. We find Ma, M2 e Af(Y, T) such 

that g = (M1, M2). Except in the cases K E {He, F2, F1 }, we can use [Co] to find 

M1 and M2 as nonconjugate T-invariant maximal subgroups of K.  In the three 

remaining cases take M1 = CK(z), where (z) = Z(T fq g) ,  and M2 = NK(U) 

for suitable E4 ~ U ,~ T N K with NK(U)/CK(U) ~- Es, and set K1 = (M1, M2). 

Since F*(M1) = 02(M1) in each case, also F*(Ct,:(U)) = 02(CK(U)) and so 

F*(M2) = 02(M2). In case g -~ He, we take V to be the strong closure of z in 

Z(J (TNK) )  ~- Fie.  Thus V is T-invariant. By [Co], M1 is maximal in g in this 

case, so K = K1, as required. In the other two cases, by [Co], M1 is a maximal 

2-local subgroup of K,  so 02(gl )  = 1. Likewise O(M1) = 1, so O(Cg(y)) = 1 

for all y E U #, whence O(K1) = 1. Thus F*(K1) = L1 x . . .  × Ls, where the Li 

are nonabelian simple groups. Now M1 = CK, (z) and F*(M~) is extraspecial; 

it follows that z = Zl . . . z ,  where zi ELi  and F*(CL,(Zi)) < F*(M1). Clearly 

IF*(CL,(Zi))l >_ 4, so since F*(M1)' ~- Z2, F*(M1) normalizes each Li. Hence 

zi • Z(F*(M1)) for all i, so s = 1. Finally, since M~ = Cgt (z)  has a sporadic 

composition factor, L1 ~ they(2') by [GL; 14-1]; L~ ~ Chev(2) since otherwise 

M10L1 would be a parabolic subgroup of L1 by the Borel-Tits theorem; L1 ~ Aft 

by a simple calculation; so L1 E Spot. Then LI - K by [Co] and the structure 

of CK~ (z), so K~ = K.  This completes the proof. 

For the final steps of the proof of the theorem we also need two generational 

results concerning alternating groups (cf. [As2; §7]). First, for any subgroups 

H and J of a group, mad integer k > 0, set [H, kJ] = [H, (k - 1)J, J] (and 

[H,0J] = H).  Also set H (k) = [H, ( k - 1 ) H ]  for k > 1. Let Sk be aSy low 

2-subgroup of ~2 ' .  By [K], SI, has nilpotence class 2 k-1 . 

Our results are stated for our group X,  with notation as set up in the 

Introduction. 

PROPOSITION 5.2: Assume that C = Q, X ~- ~2n+l, a n d  X contains a near 

component K of type A~n+l. If  I is a subgroup of X such that i ~- ~2n with i 

invariant under T, then either X = (I, C(X; T ) / o r  2n + 1 = 2 m + 1 for some m. 

Proof." Assume that 2n + 1 ~ 2 m + 1. Ill particular, 2n + 1 _> 7. Set R = 02(K) 

and U = [R, K], so that U is a natural A2,~+l-module. As argued in the proof of 

Proposition 3.12, HI( /~,  U) is trivial. 

Let X = ~2n+1 act on f~ = {1, . . .  ,2n + 1}, with notation chosen so that 

fixes 1, and let ~0 be the largest orbit of T, of size 2" ,  say. Set ~z = ~ - ~0, 
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so that 1 E ~1. Since 2n ¢ 2 " ,  ]~1[ >-- 3. Let Xi, i = 0,1, be the pointwise 

stabilizer of ~1- i  in X,  so that Xi ~ Z,v~. Now _f is the stabilizer of 1 in X, and 

since [~1[ > 3, it follows that (X~,I) = X. Since Q <_ T <_ C(X;T) ,  it suffices 

to prove that X~ <_ C(X; T) in order to conclude that X = (I, C(X; T)). 

Let Too be the smallest nontrivial term of the lower central series of T and 

set D = Cx(Too). Thus T <_ D <_ C(X; T), and we shall show in fact that 

X~ _</), by induction on IX I. 

If Too <_ Z(X),  then D = X and the desired assertion is trivial, so we may 

assume that Too ~ Z(X).  Then Too ¢ 1 in 2( = X/Z(X) ,  so Too is the smallest 

nontrivial term of the lower central series of ~'. If Z(X)  ¢ 1, then by induction 

in ,~ the stabilizer of the chain TooZ(X) > Z(X)  > 1 covers X~, and since 

X~ = 02(f(~), Cx(TooZ(X)) covers ) ~ ,  as desired. Therefore we may assume 

that  Z(X)  -- 1. 

Now HI([£,U) is trivial, so R = Z(K) x U. Since X = K T  and Z(X)  = 1, 

it follows that Z(K) = 1, so R = U. Now every element of Q stabilizes the chain 

K > U > 1; and since H l ( f ( , u )  is trivial, it follows that Q = UCQ(K). Again 

CQ(K),~ X = KT,  so as Z(X)  = 1, CQ(K) = 1. Thus Q = V. Set U1 = IX1, U], 

so that U1 is a natural  Xl-module. Also set Uo = Cu(fQ), so that U = U0 x U1 

and U0 is the full permutation module for -~0 = ~2-,. Since U1 is absolutely 

irreducible for ~'1 and IX0, X1] = 1, we have [X0, Ua ] = 1. 

Let Xi be the preimage of Xi in X and set Ti = T N Xi, so that Ti E 

Syl2(Xi), i = 0, 1. Thus T = ~'0 × :F~- Moreover, U0 is normalized by X1 and 

X0 by its definition, so U0 ,aT. Set H = XIXo and H = H/Uo. Now T0 ~ Sm 

mad T1 = T l l  x . . .  >( T l s ,  where each ~'11 ~- Sk,, mad l 11 -- 2 t~a + - . .  + 2 k', 

m > k l > - - . > k s .  

Let VI be the F2-permutation nmdule for T1- Then U -- U1 is isomorphic 

as ~'l-module to a submodule of V1. Moreover, V1 = Vll ~ " "  @ V18, where Vii 

is the F2-permutation module for ~'~i (on its nontrivial orbit), mad [Vli, ~'ai] is 

trivial for all i ¢ j .  Since re(Vii) = 2 k' _< 2 ' ' '-1 we have [U, 2"~-1T1] = 1. By 

our remarks above, ~'1i has class 2/q-1 , so 2P1 has class at most 2 m-2. Therefore 
4,(~'-a) ~ (2" - ' )  _< ~ and then 2"(2"-'+~"~-2+1) = 1. Hence -1 = 1 if m >_ 3. If 

m = 2, the same conclusion holds, since then I~11 = 3, so IT1[ = 2, ]U[ = 4, and 

thus [Tll = 8. 

,,, @(2"-'+1) < ~; but  U Vl We also know that 2~0 = S m  has class 2 m-1 , so "0 - = 

and [-~0, Vii = 1, so T0(2"-'+2) = 1. In particular, T(~") = 1. Furthermore, since 
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= T0 x T1, we have [T0,Tll _< U, so [To,T1,T0] = 1, and then [T0,To,Tl] = 1 

by the three subgroups lemma. 

We now have [T0,T,,2h0] = [T0,T0,2h,] = T0 (2") = ~ "(2'n-1) = 1,  a l l d  a s  

= ToT~ with 5hi,~T, i = 0,1, it follows that ~O")  = 1. Thus, T (2'~) _< U0. 

On the other hand, T0 - S "  contains a 2"-cycle, which acts freely on U0, so 

[U0, (2"  - 1)T0] # 1. Therefore T (~') # 1, so Too _< U0. This implies that 

X1 _</), and the proof is complete. 

Finally we treat the exceptional A7 case. 

LEMMA 5.3: Assume that C = Q and X ~- AT. l f  X contains a near component 

K ofsmalJ A7 type, then X = ( C x ( Z ) , N x ( J ) ) .  

Proof'. We may assume that V = (Z x)  is singular, otherwise the desired conclu- 

sion holds trivially. By Proposition 3.12, J is a root four-subgroup of X,  and so if 

we set _h7 = NR(J ) ,  then N is a maximal subgroup of X of order 2 3 • 3 2. Clearly 

also N = N x ( J ) .  The desired conclusion is now equivalent to the statement that 

there exists x E C x ( Z )  of odd order such that ~ 6 N. 

As seen in Proposition 3.12, HI ( .~ ,U)  is trivial, where U = [K,V]. It 

follows that V = U x (V N Z(X)) .  Passing to J~ = X / V  N Z(X) ,  we may assume 

that O2(K) = U and must prove that Cx(Z)  contains an element x of odd 

order with £, ~ N. But any g E Q stabilizes the chain K > U > 1, and since 

H1(fC, U) is trivial, it follows that g E K C x ( K ) .  Thus Q = U x CQ(K), and 

hence Z - Z0 x Cz(K) ,  where Z0 = Z n U. Therefore it is enough to show that  

some element x of odd order with ~ $ ]V centralizes Z0. 

However, [Z0[ = 2 (which can be seen by restriction to a Frobenius subgroup 

of X of order 20). By Proposition 3.12, ~" is transitive on U #,  so IX : Cyc(Zo)[ = 

15. Hence we can take x of order 7, and the proof is complete. 

6. Baumann's L2(2") lemma 

In this section we establish a reduction lemma due to Baumann for X in the case 

that X has a singular 2-reduced setup and X has an L2(2") component. In the 

next section we establish an analogue for A2,+l components due to Aschba~her 

[As2; 3.3]. 
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We set up the situation for both results. Our hypothesis is the following: 

(6.1) (1) F*(X) = 02(X)  and X has a singular 2-reduced setup; 

(2) Q e Syl(C); 
2 

(3) A • A(T), .4 # 1, and for all B • A(T)  with 1 # / ~  < A, 

we have/} = A; 

(4) /~ is a subgroup of X such that [A, g]  # 1, and either 

R ~ L2(2 n) (n >_ 1) o r / f  -~ A2,+1 (n > 2); 

(5) Either R is a component of ~7, or e lse / f  ~ L2(2) and A" 

is S-invariant. 

In this situation, we first observe that by (6.1)(5) and Proposition 4.1, 

normMizes/~. 

Xo = KS,  

and let Xo and K be the preimages of Xo and/~" in X. Set 

(6.4) Vo = Cv(O2(fifo)), Co = Cxo(Vo), and Xo = Xo/Co, 

so that by Lemma 3.3, / f  ~ /~" and Vo is 2-reduced and singular in Xo (with 

R] # 1). 

Also put 

(6.5) u = [v0, R] and U0 = Cv(R) .  

Then /~, V0, and U satisfy either (i), (ii), or (iii) of Proposition 3.12, or else 

/ f  ~ L2(2), in which case Proposition 3.4 applies. We consider case (i) and the 

L2(2) case in this section, and the cases (ii) and (iii) in the next. 

PROPOSITION 6.1: Assume (6.1), with either i f  satisfying Proposition 3.120) or 

/~ ~ L2(2). Then X has a subgroup Y such that 

(i) S normalizes Y and S N Y E Syl2(Y); 

(ii) Y = /~ , ,  and S induces inner automorphisms on $:; 
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(iii) F*(Y)  = 02(Y)  and Y = 02(Y);  and 

(iv) / f / £  is subnormed in f( ,  then Y is subnormal in X.  

Proof: By Proposition 3.12(i), S induces inner antomorphisms on/~" and 

(6.6) ~i = J = g e Sy l~(g) .  

(These assertions are trivial if R ~ L~(2).) 
Since Xo = KS ,  it follows that  

(6.7) Xo = / £  and .,~o =/~" x O2()£0). 

Set Ao = (A N Co)Vo. By Propositions 3.12(i) and 3.4, 

(6.8) Ao • A(T). 

But clearly fi-0 < -4 since -'10 centralizes/~'. Thus by (6.1)(3), -40 = 1. Now by 

(6.1)(2), 

(6.9) A0 < Q, so Ao = (A f3 Q)Vo. 

Since V < Z(Q), (6.8) and (6.9) imply 

V < A0, so V = (A f3 V)Vo. 

By Propositions 3.4 and 3.12(i), 

(6.:0) 
(1) U/Uo is a na tu ra l /£  - L2(2n)-module; and 

(2) Cu(J)  ~ Uo. 

On the other hand, by (6.6) and (6.7), for some w • K, (A, A w) covers 

/£, and t h e n / £ '  _< (A, A¢). Hence Cv(~:') >_ Cv(fi,) fq Cv(-~) ~. Since A0 = 1, 

I.~1 = 2 n, so IV : Cv(A)I _< 2". Hence IV : Cv((Ci,,.4'r))l < IV : Cv(K')I  < 

22n = IU/Uol. It follows that  

(6.::) 

and, in particular, 

V = UCv([£') = UCv((A,A~));  

v = IV, ~:']. 
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Set To = T f3 Xo E SyI2(Xo ) and B = (An) ,  and let L be the subnormal 

closure of B in Xo; i.e., the largest subgroup of Xo such that L = (BL). Set 

Y = O~(L). We shall argue that Y satisfies the conclusions of the proposition. 

Notice that To normalizes B and hence L. Thus Y = 02(LTo). Also, since 

[a, K'] # 1 , /£ '  < (,4g') mad so/~" _< L. 

Set W = (E L) (recall that E = £11(Z(d))). Clearly W is To-invariant. We 

first prove 

LEMMA 6.2: The [ollowing conditions hold: 

(i) U < W < Q and W is elementary abelian; 

(ii) W = UE; and 

(iii) S N Q ~ LTo. 

Proof.- By (6.8) and (6.9), Ao E A(T) and A0 _< Q. Hence ~l(Cw(A0)) _< 

A0 < Q, and s o E  ___ Ao ___ Q. Similarly, Ao E A(TY) for a n y y  E L and so 

E ~ _< Ao _< Q. Thus W = (E L) _< Ao and W is elementary abelian. 

Set F = E n U. By (6.10)(2), F 2~ U0. But /~" _< L, and so (F L) > (FR'), 

which covers V/Uo. However, (E L) <_ (E L) = W, so W covers V/Uo. Since 

U = [V,/£'] and U N W is invariant under/~'(_< L), V _< W, and (i) holds. 

Next, by (6.9), Ao = (A n Q)Vo, so by (6.11), A centralizes Ao/V. Since 

W < A0, A centralizes W/U. Conjugating by To yields that B centralizes W/U, 

and so also L = {B L) does. Hence by definition of W, W = EU, proving (ii). 

Finally, as V <_ Y < Z(Q), CQ(W) = CQ(E) by (ii). But S = CT(E), so 

SNQ = CQ(E) = CQ(W). Since W 4LTo and Q~X,  SnQ4LTo,  so (iii) holds, 

and the lemma is proved. 

We set R = S N Q ,  so that R~LTo. Obviously [S,Q] < S N Q  = R, so 

S centralizes Q/R. But LS = (S Ls) as B < J < S and L = (BL), so LS 

centralizes Q/R. Hence if we set L*T~ = LTo/R, then 

L'S* centralizes Q*. 

We next prove 

LEMMA 6.3: The following conditions hold: 

(i) Y is subnormal in K; 

(ii) F*(Y) = 02(Y); and 
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(iii) ~" = / ~ ' .  

Proof: By construction, Y,~ L and L is subnormal in X0. Moreover, as X0 = 

/t" x Oz(X0) by (6.7), I 7, = O2()(0) = Oz(/~) = / t " ,  so (iii) holds, and (i) follows 

immediately. 

If 1 # z E L has odd order, z does not centralize R, as x centralizes 

Q* = Q/R, but not F*(X) = Q. But R _< S and R,aLTo, so [R,z] < 02(Y). 

Since [R,x,z] = [R,z], x does not centralize 02(Y). Thus Cy(O2(Y)) is a 2- 

group, whence Cv(O2(Y)) < 02(r)  and F*(Y) = 02(Y), proving (ii). 

In view of the preceding lemma, it remains only to prove that Y N S E 

Syl2(Y ) to complete the proof of the proposition. 

We treat the cases n > 1 and n = 1 separately, first proving 

LEMMA 6.4: / f n  > 1, then S N Y  E SyI2(Y ). 

Proof: We argue first that Ny(To) contains a subgroup H of odd order such 

that  / I  "~ Z2--1 is a Cartan subgroup of/~'. Indeed, Y is T0-invariant and 

17"To =/~'~'0 = )~o, so by the Frattiui argument YTo contains such a subgroup 

H,  and then H < 02(YTo) = Y. 

Now [S,H] <_ [T0,Y] _< Y. But since S = CTo(E) and E char J char 

To, H normalizes S, so [S, HI <_ Y N S. On the other hand, since ,4 _< 5' and 

[A, g] = R, [/~, $] e Syl2(K). B u t / ~  = l ~ (as n > 1) and so Y N ,~ E Sy12(I7"). 

Thus to complete the proof, it suffices to show that if we set C1 = C N Y, then 

RN C1 e Syl2(C1). 

Set Q1 = Q N C1. Since Y* centralizes Q~ < Q*, so does C~'. Hence 

Q~ < Z(C~), so Q~' is abelian. Since Q~ E Syl2(C[), Burnside's theorem implies 

that  C~ has a normal 2-complement D*. Set ?*  = Y*/D*, so that Q~ < Z(Y*) 

and -* "* ~" ~ ( ?  Q~ Y / Q 1  = /~ = L2(2"). But I~* = O 2 *), so either = 1 or n = 2 

and Y* ~ 2L2(4)( ~- 2As). However, if we set So = S N Y, we have seen that 
~ 

S0 E Syl2(Y ), while (SoNC)* < R* = 1. Therefore S~ -~ S0 - E2-. But 

2L2(4) has no E4-subgroup, so 17"*~ 2L2(4). We conclude that Q~' = 1, whence 

R E Syl2(C1R), so R M C~ E Syl2(C~ ), and the lemma is proved. 

The remaining case n = 1 is easier. With notation as above, as L >_/~' and 

/~ ~ ~s, Zs ~ l 7" = [L,.4]. It follows that Y* --- Z3 with Y* centralizing QT, so 

Y* = O2(y *) is of odd order and hence QT = 1. It follows that R N Y = S N Y E 

Sy12(Y), as required. With Lemmas 6.3 and 6.4, we conclude that Proposition 

6.1 holds in all cases. 
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7. Aschbacher's A2n+1 analogue 

We prove here an analogue of Proposition 6.1 for alternating components due to 

Aschbacher [As2; 3.3]. We continue the notation of the previous section. 

PROPOSITION 7.1: Assume (6.1), mad suppose that K, Vo and Uo satisfy either 

(ii) or (iii) of Proposition 3.12. (See (6.2) - -  (6. 5).) Then the fonowing conditions 

hold: 

(i) X has an S-invariant subnormal subgroup Y such that 

(I) Y fq S E SyI2(Y); 

(2) 17"S/O2(I7"S) ~- ~3 (case (ii)) or As (case (iii)); 

(3) F*(Y) = 02(Y); and 

(4) k < (I,Y>, where i is a (TNK)-invariza, t subgroup of K isomorphic 

to A2,; and 

(ii) /£Y = H C ( Y ; S) for some normM near component H o f Y  such that f-I = ~" 

with H of type L~(2) or L2(4), respectively, then 

(1) K = LC, where L is a near component of X of type A2,,+1 (case (ii)) 

or of smedl Ar type (case Oil)); alld 

(2) T has a characteristic subgroup P such that P normalizes L and 

P n L E Syl~(L). 

Proof'. First suppose that case (ii) holds, so 3~0 ~ E~n+l = En, where we 

may take ~ = {0,1 , - - . ,2n}.  By Proposition 3.12, V0 < J ,  so Cvo(J) < E = 

121(Z(J)). Thus by (7), (3), and (4) of Proposition 3.12(ii), S = J is generated 

by n disjoint transpositions, say (12) , . . . , (2n  - 1 2n), and for some a E A #, 

= (12) (say), and a acts on V0 as a transvection. Furthermore, as in (6) of that 

proposition, B = (a,A n Co,Cv(a)) E .4(T). Clearly h E/}  < .4, so by (6.1)(3), 

/} = .4. Hence h, = (5) x C~i(/~'). Likewise (CA(A'), V) E ~4(T) and (6.1)(3) thus 

implies that ft. = (~). 

Set b = ((012)). Then clearly S normalizes D, ~b/o~(~b) ~- r~3, and 

k = (D, f),  where f ~- A~,, is the stabilizer in/~" of 0. Le~ /5 be the Sylow 

3-subgroup of the preimage in )f0 of D. Thus IDI = 3, 3z)/o~(~zS) _-__ r~3, and 

= (D, I), where f < A~,, f </7", and f maps on f. 

Now (a)/) is an .#-invariant subgroup of)~ isomorphic to L2(2), and (~) = .4 

with A E ,4(T). Thus Proposition 6.1 applies and yields the existence of a group 

Y such that Y is S-invariant, I 7" = /9, Y M S E Syl2(Y), and F*(Y) = 02(Y). 

Therefore (i) holds in this case. 
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In case (iii) we argue similarly. This time .4 = J = S is a root four-group 

in k ~ Av by Proposition 3.12, and we similarly find 3. ~ E4. 

Let /~  and f be root A5 and A0 subgroups of/~ respectively (i.e., two-point 

and one-point stabilizers in k on D), containing ,~ and invariant under 2" rl/~. 

Then K = (D,f) .  Let /) be the layer of the preimage of b in X0, and define i 

similarly, so t ha t /~  ~ As, t ~ A s , / )  _</~, a n d / (  = (D, I). 

Since [fi,,/)] = / ) ,  Proposition 6.1 applies as in case (ii) and yields (i) in 

this case as well. 

Suppose now that Y = HC(Y; S) and H = ]Y, as in (ii). For any x E S, 

H* maps on _0" = l 9", so [H*, V] = [H, Y]. Hence by Proposition 2.1, Hr  = H; 

i.e., H is S-invariant. Also, we know that (A f3 C)V E .A(T), so V < J < S. 

Thus [~', V] = [H, V] < [H, S] < H, and as H is a near component, it follows 

that [H, O2(H)] = [I~, v] < v .  Furthermore, /]" < (fi,~), so as H is a near 

component, H < (AH). 

Set R = S 13 Q and X* = X/V .  Since S normalizes H, [R, H] < 02(H) 

and so [R, H, HI _< [O2(H), HI _< Y. Thus JR*, H*, H*] = 1, so JR*, H*] = 1 as 

H = 02(H). Likewise [J, Q] < R as J < S and J,~ T. Thus J* and hence A* 

centralizes Q*/R*, so H* < (A *H') does as well. We conclude that H* centralizes 

Q*. Since/~ ~- A2,,+1 is simple and H _</~, it follows now that K~' = CK.(Q*) 

covers/~. The preimage K1 of K~' in X is normal in K. Also C f3 K1 < Q since 

any x of odd order in C N K1 centralizes both Q* and V and hence centralizes 

Q, so x = 1. We conclude that K1Q/Q '~ fi.  

Set L = O2(K1). Then as K[  centralizes Q*, L* is a covering of .~, so 

L* ~ (2)A2,,+1 (cf. [GL; 6-1]). Furthermore, L = / ( ,  so g = LC and [V, L] = 

[v, R] = u .  By definition, L centralizes Q/V, so L = 02(L) centralizes Q/U. 

Also L ,~ K and hence L is subnormal in X. Thus L is a near component of X 

and K = LC, so (iil) holds. 

Finally, set F = E N U and W = CE(L). Since V <_ J ,  E _< C, so 

E _< Q by (6.1)(2). Therefore [L, EV] <_ [L, Q] = U. But since L = 02(L) 

and H~(L/O2(L),U) is trivial, a.s noted in the proof of Proposition 3.12, this 

implies that E V  <_ UCEv(L) = U × CEv(L). Since J normalizes L, both factors 

are J-invariant. Also E = ~ ( Z ( J ) )  = CEV(J) since EV <_ J. Therefore 

E = (EN U) x CE(L) = F × W. 

Now set m = re(F) mad define the subgroup P of T as follows: 

P = (t e T Im(E/CE(t)) < m). 
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Since E char T, clearly P char T. We argue that  (ii2) holds for P.  Indeed, if 

t E T moves L, then by Proposition 2.1, L t centralizes U, whence U t is disjoint 

from V. In particular,  F fl F t = 1, so m(E/CE(t) )  >_ m = m(F).  Thus t ~ P 

and consequently P leaves L invariant. On the other hand, if t E T fl L, then 

t leaves F invariant, so CF(t) ~ 1. Since E = F × W and t centralizes W, it 

follows that  m ( E / C s ( t ) )  < m, so t e P.  Thus P f3 L = T f3 L E Syl2(L), as 

required. This completes the proof of Proposition 7.1. 

8. N o r m a l  s u b g r o u p s  h a v i n g  A s c h b a c h e r  f o r m  

For the balance of the paper  we let G be a minimal counterexample to Theorem 

A. Then G does not have Aschbacher form and, in particular, G has a singular 

2-reduced setup with V = (Za) .  Furthermore, if H is any T-invariant subgroup 

of G with Q < H and H T  < G, then H does have Aschbacher form relative to 

T. 

More generally, if H is an R-invariant subgroup of G for some R < T such 

that  R fl H E Syl2(H), F*(H) = 02(H), and H R  < G, then H has Aschbacher 

form (relative to R) - i.e., H = K(H)C(H;  R). This observation will be used 

when R char T (in particular, with R = S), in which case C(H; R) < C(G; T). 

For brevity, for ally T-invariant subgroup Y of G, we set Yo = C(Y; T). In 

particular, Go = C(G; T). 

In this section we prove 

PROPOSITION 8.1: If H 4G with Q <_ H m~d H T  < G, then Q E Syl2(H ). 

As noted above, H has Aschbacher form relative to T, so that  H = 

K(H)Ho.  Since H ,1 G, obviously g ( g )  <_ K(G). 

Set R = T f3 H ,  so that  R E SyI2(H) and Q _< R. We shall establish the 

proposition by contradiction. Thus we a.~sume 

(s.1) Q < R. 

Furthermore, we choose H so that  R has maximal order. 

Set N = No(R),  so that  G = H N  by tile Frattini argument as H ~ G. 

Since R < 02(N)  and Q = O2(G) with Q < R, we have N < G. Also T < N 

as R ¢ T .  Thus N T  < G and so likewise N = K(N)No.  If N = No, then G = 

HNo = K(H)HoNo = K(H)Go = K(G)Go, contrary to assumption. Therefore 

N # N 0 .  
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Let Ki, 1 < i < r, be the near components of K ( N )  not contained in No. 

Then K = K11(2 . . .  K~ ,~ K(  N)No = N,  in view of Proposition 2.1, and Ki y~ No 

for all i. 

Suppose some nontrivial product I of nonsolvM)le near components of K is 

normal in N with I < K.  Then H I  ,~ H N  = G and H I T  < G. However, as I is 

nonsolvable, T Iq H I  > T f3 H = R, so H I  contradicts our maximal choice of H. 

It follows that no such product I exists. We conclude from this that the Ki are 

isomorphic, 1 < i < r, and one of the following holds: 

(8.2) 
(1) N permutes the Ki trmlsitively, and Ki is nonsolvable, 1 < i < r; or 

(2) Ki -~ A4,1 < i < r. 

Moreover, in the latter case, Proposition 3.4 implies: 

(8.3) I f K i  ~ A4, 1 < i < r, then Ki = [Ki,J]. 

We also immediately obtain 

LEMMA 8.2: Some Ki is not a nea.r component of G. 

Proof: Indeed, G = H N  = H K N o  = K H N o  as H ,~ G, whence 

G = K K ( H ) H o N o  = KK(H )G o .  

If the lelnma is false, then K K ( H )  < K(G),  whem:e G = K(G)G0, contradiction, 

so the lemma holds. 

We establish the proposition by contradicting this conclusion. Notice that 

/~i ~ 1; i.e., [Ki, V] ~ 1, for otherwise Ki < Cc;(Z) and so Ki < No, contradic- 

tion. But V < Q < R <_ O.z(N), and so [K, O2(N)] = [K,R] = [If, V]. Hence if 

we put G* = G / V ,  it follows that K* centralizes R*. 

We first prove 

LEMMA 8.3: K* centralizes E(H*). 

Proof." Let L* be a component of H*. Then P* = R* N L* E Syl2(L*). Since 

K* centralizes R* and induces a group of pernmtations of the components of H*, 

K* leaves L* invariant. 

If K* is nonsolvable (whence K* is perfect), K* induces inner automor- 

phisms on L* by the Schreier ln'operty for simple K-groups (see [GL; 7-1]). But 
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then as K* centralizes P* E Syl2(L*), K* centralizes L*. Hence K* centralizes 

L* in this case. 

Suppose then that K* is solvable and assume by way of contradiction that, 

say, K[ does not centralize L*. Then [L*, K~] = L*. On the other hand, L* does 

not centralize V; for if it did, then L* would stabilize the chain Q > V _> 1 (as 

L* < E(H*)),  a contradiction as L* = 02(L *) and Q = F*(G). Therefore, if we 

let L be the preimage of L* in G, then L ~ 1. 

By (8.3), [K1, A] = K1 for some A E .A(T). Hence [K1, A] = R~. Since 

1 # L = [L, KI], we conclude that # 1. This implies that CA~t(L*)(P*) 

is a 2-group. Indeed, if L is of Lie type, then by Proposition 3.5, L E Chev(2) 

and the assertion holds by [GL, 13-3]. If i, E Spor, it holds by the centralizer 

structures given in [GL, §5] (and induction) and for L E Air, it follows for example 

from the fact that a Sylow 2-subgroup of A, has orbits whose sizes are distinct 

powers of 2, so its centralizer in ~,, acts semiregularly on each such orbit. Finally, 

K* centralizes P*, so K* = O2(K *) centralizes L*, contradiction. The lemma 

follows. 

We next prove 

LEMMA 8.4: K* does not centralize O(H*). 

Proof: Suppose false. Since K* centralizes E(H*) by the preceding lemma and 

also centralizes O2(H*) _< R*, K* centralizes F*(H*), whence Cn-~ . (v*(n*) )  

= K ' Y * ,  where Y* = Z(F*(H*)). But H*K*~G* as H 4 G  and K 4 N  with 

G = HN.  Also F*(H*) 4 G*, so K ' Y *  4 G* with K* centralizing Y*. 

If K* is nonsolvable, then K* = E(K*Y*),~ G*, whence K V  ~ G. But K 

is a product of near components of K V  as V <_ R, so K is a product of near 

components of G, contrary to Lemma 8.2. Thus K is solvable, whence K* is an 

elementary abelian 3-group and K ' Y *  is abelian. Hence each K* is subnormal in 

G*, whence KiV  is subnormal in G. Again Ki is subnormal in KiV,  so each Ki 

is a near component of G, again contradicting Lemma 8.2. The lemma follows. 

Set D* = O(H*). Then D* char H* ,~G*, whence [D*,Q*] < D*AQ* = 1. 

Since Ca(Q) < Q, it follows that D* acts faithfully on V. Likewise K* centralizes 

Q* < R*, so CK.D.(V)  < 02(K*). 

We separate the solvable and nonsolvable cases, first eliminating the latter 

C a s e ,  
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LEMMA 8.5: K is solvable. 

Proof: Suppose false. Since N* permutes the K* transitively, no K* centralizes 

O*, 1 _< i _< r. Thus CK.(D*) <_ Z(K*). Furthermore, as no Ki < No, J* 
centralizes no K* (otherwise the Frattini argument would yield that any such Ki 

lies in NG(J) <_ No). Thus [K*, d*] = K*. 

Set 7"1 = CT(D*). Since D* ~G*, we have [TI*,K*] < CK.(D*) < Z(K*). 

Hence [TI*, K* ] = 1, so T1 = CT(D*K*). 
Let D be the preimage of D* in G. Since CK*D*(V) <_ 02(K*), i) = D*. 

By the previous paragraph, T1 = C~.(])) = Cq.(~,'L)). Furthermore, [K, R] = 

[K,V] < V, so each /~i is quasisimple. Thus O2(/~) < Z(/~). But b is /~- 

invariant and of odd order, so O2(~,'L)) < O2(/~), and as O2(/~1)) centralizes 

/9, it follows that O2(/~/)) < Z(/~/)).  Hence if we set Jr1 = T / f / ) ,  we see that 

Lemma 3.3 is applicable; we find that V~ = Cv(O2 ()(~)) is 2-reduced and singular 

in the preimage Xl of X1 in G, and if Cx = Cx, (V1) and f(1 = XI/C1, then 

F*(fQ) = F(D) and [(D ~- [VD/O2(KD). But then C~(/)) = Cq.(/~/)) = 1. 

Applying Proposition 3.4 to the preimage of 7'/), we see that ( j b )  = L1 x . . .  × Lr, 

where Li ~ ~a and for each i, Li IqT = (ai), where ai is a transvection on V1. By 

Lemma 3.2(ii2), ~i e 02,2(fQ ). Hence [ai,/~] = 1 for each i, so [J,/~] = 1. Bu t /~  

is a central factor group of K*, so [d*, K*] = 1. This contradicts [J*, K*] = K*, 

and the lemma follows. 

Now we complete the proof in a similar way. In the present case K'D* has 
odd order and so CK.D.(V) < O2(K*). Thus KD ~- K'D*. Set )(1 = T/~/~, 

TI = CT(K*D*), R = 02(fQ), VI = Cv(R), C~ = Cx,(V~) and fQ = X~/C~. 
Set X2 = (jR~). Again Proposition 3.4 gives Jr2 = £1 x . . .  x Lr, with each 

Li ~ E3. But /~ = [J , / ( ] ,  by (8.3), so .~ is the direct product of some of the 

03(Li). Now O3(Li) = [O~()(2), JNLi] is invariant under CRD(J), and it follows 

t h a t / t D  = O3()(2) x CRb(J ). Therefore [ R , b ]  = 1, and so [K*,D*] = 1. This 

contradicts Lemma 8.4 and completes the proof of Proposition 8.1. 

As a corollary we obtain the following key restriction on the structure of C 

mad O. 

PROPOSITION 8.6: The following conditions hold: 

(i) Q ~ Syl~(C); and 

(ii) Either F ' ( G )  = F ( 0 )  < 0 ( 0 )  or F ' ( 0 )  = E ( 0 )  is a product ofisomorphlc 

components transitively permuted by T, and 0 = E(G)T. 
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Proof: Since T C < Ca(Z)  < Go < G and C ,~G, Proposition 8.1 gives Q E 

Syl2(C), proving (i). 
Since 02(0) = 1, either F*(G) = F(G) < 0 (0 )  or E(G) # 1. Suppose 

E(0)  contains a nontrivial product H of components with H ,~ G and HT < G. If 

H denotes the preimage of H in G, then H ,a G and H T  < G, whence Q E Syl2(H ) 

by Proposition 8.1. But Q < C, so Q = 1 and hence H is of odd order, contrary 

to the fact tha t /~  is a nontrivial product of components of 0.  Hence no such / t  

exists. It follows at once that either F*(G) = F(0)  < 0 (0 )  or F*(G) = E(G). 

In the latter case the components of 0 are isomorphic and transitively permuted 

by G; and taking E(G) = H, we also deduce that 0 = E(G)T ,  so (ii) holds. 

Finally, we sharpen the preceding proposition in case F*(G) = F(G). 

PROPOSITION 8.7: I f  F*(G) = F(G) < 0 ( 0 )  and we set L = (dO), then £ = 

L1 x L2 x . . .  x Lr, where Li -~ ~3, 1 < i < r, 7" permutes the Li transitively, 

and 0 = 

Proof: Set )( = 02,2(G)J. Then the preimage X of X in G is solvable. Also 

O2()[) = 1 as 0 (0 )  < X and F*(G) < O(G). Hence if we set L = (])t), 

Proposition 3.4 implies that for some r _> 1, L = L1 x .-- x L~, where Li ~ ~s 

and (ai) = J n Li - Z2 with ai inducing a transvection on V, 1 < i < r. In 

particular, J = (ai]l < i < r). Hence by Lemma 3.2(ii), J _< O2,2(0). 

Applying Proposition 8.1 to the preimage of O2,2(G), and noting that J # 

1, so that this preimage is not 2-closed, we conclude that 0 = 02,2(G)T = 

02,2(0) = X. Thus L ,1G. By the Krull-Schnfidt Theorem, T permutes the Li. 

If L0 is a nontrivial T-invariant product of Li, then again Proposition 8.1 gives 

a contradiction if LoT < G. Therefore 0 = LoT, whence T permutes the Li 

transitively, and the result is proved. 

9. The  reduct ion  step 

We preserve the assumptions and notation of the preceding section. Then G has 

a singular 2-reduced setup with V = (Z a) and Propositions 8.6 and 8.7 give the 

structure of 0 as well as the fact that Q E Syl2(C ). 

In this section we eliminate all but three possibilities for the structure of 

G, proving 

PROPOSITION 9.1: One of the following holds: 

(i) 0 ~ L2(2'i), n >_ 1; 
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(ii) 8 ~ E2,+1, n _> 2, aJ~d G contains a near component o[ type A2,+1; or 

(iii) G ~- Ar and G contains a near component of small Ar type. 

We argue in a sequence of lemmas. Since G has a singular 2-reduced setup, 

.f ¢ 1. Set L = E(G),  so that either L = 1 or L is the product of isomorphic com- 

ponents/~i,  1 < i < r, transitively permuted by ~', and 0 = LT by Proposition 

8.6. Since J ,~T,  it follows in the latter case that J centralizes no Li, 1 < i < r. 

On the other hand, if F*(G) = F ( 8 )  _< O(G), then by Proposition 8.7, we know 

that 8 = LT', where £ is the direct product of subgroups Li -~ Ez(~ L2(2)), 

1 < i < r, transitively permuted by 7' with 8 = LT' mad L = (~g). 

In either case, G0 contains no Li, for if it did, then since t~0 >_ T, 8o _> 

(T, Li) = G, and since C < Go, Go = G, contradiction. 

Furthermore, we choose A E .A(T) such that .,i ~ 1 and subject to this, so 

that .4 has minimal order. Then if B E A(T) and 1 # / )  _< A, we h a v e / )  = fi,. 

Since [fi~, Lj] # 1 for some j ,  we can find, in view of the transitive action of T, 

T-conjugates All of A(1 < i < r), such that [Ai, Li] # 1 for each i, and the -4i 

are also minimal. This choice, together with Propositions 8.1, 4.1, and 3.4(iv), 

enables us to apply Propositions 6.1 and 7.1 to mW Li ~ L2(2") or A2,+1, as we 

shall do in the proofs of Lemmas 9.5 and 9.6. 

First of all, since [J, L1] ~ 1, Proposition 3.5 immediately eliminates many 

possibilities for components of G, yielding 

LEMMA 9.2: I r E ( C ) ~  1, then the following conditions hold: 

(i) L1 e Chev(2) U Aft U Spor; and 

(ii) L1 ~ Sz(2"), (S)Ua(2"), 3At, Ly, or J1. 

Similarly we prove 

LEMMA 9.3" I~L1/Z(LI) ~ La(2") or Sp4(2nf,  then the image ofT  in Out(L1) 

acts trivially on the Dynkin diagreun of L1. 

Proof." Suppose false. By Lemma 4.2, J leaves L,1 invariant. We set .1~ = L1J(t~, 

where t E ~' induces a graph or graph-field automorphisnl on LI, make the usual 

reduction with Lemma 3.3, mid then apply Proposition 3.13. Since ] does not 

centralize L1, it yields a contradiction. 

We can now prove 
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LEMMA 9.4: Either L1 ~ L2(2n), n > 1, or L~ -~ A2n+l, n > 2. 

Proof." If E(G)  = 1, then L~ ~ L2(2) ~ Z3, as noted at the beginning of the 

section. Hence we can suppose that E(G) # 1. We assume the lemma fails. If 

L1 E Chev(2), then L~ ~t L2(2"), Sz(2"), or (S)U3(2") (Lemma 9.2(ii))) and if 

L1/Z(L1) ~ La(2") or Sp4(2")', then no element of T induces a graph or graph- 

field automorphism on L~ (Lemma 9.3). If L~ E Air - Chev(2), then L1 = A2,, 

n > 5, and if L, E Spot, then L~ ~t J~ or Ly (Lemma 9.2(ii)). Hence if we 

set T1 = Nq-(L~), Proposition 5.1 implies that L~ is generated by T~-invariant 

subgroups /~ ,  1 < i < m, such that O(H~) < Z(LI)  and no component o f / ~  is 

isomorphic to L2(2'*) or A2-+l for any n > 2. 

Let ti, 1 < j < r, be representatives of the distinct cosets of T~ in ~' with 

tl = 1 and ~t¢ = ~,j, 1 _< j < r. Then the corresponding assertion holds for Li 

relative to the subgroups ~-i  and T[~. Hence if we set -ri = /~ ' / ' t / / 2  "" " / ~ ' ,  we 

conclude that 

(9.1) 

(1) L = (1i[1 < i < m), and for each i: 

(2) ii is T-invariant; 

(3) O(ii) ~ Z ( L ) ;  a l i a  

(4) No component of -fi is isonlorphic to L2(2 n) or A2n+I for n _> 2. 

Let Ii be the preimage of -?i in G, 1 < i < m, so that each Ii is T-invariant 

with I i T <  G. It follows that each Ii has Aschbacher form. If each Ii < 00, 

then L = (.Ti I1 < i < m) < G0, contrary to Proposition 8.6(iii). For definiteness, 

suppose -fl 2; G0, whence/1 possesses a near component K of type L2(2"), n > 1, 

or A2,,,+1, m > 2, w i th /~  2; G0 as I1 has Aschbacher form. 

Since/4  2; 00 and Z < V, [K,V] # 1, whence [K, O2(K)] < V. Moreover, 

e i ther /~  ~ Z3, L2(2"), n >_ 2, or A2,,,+t. However, in the first case it follows 

from (9.1) that/~" < Z(L) < L'. But [K, Q] ~- E4 in this case as Q < Ix and K is 

a near component of /1 .  This is impossible as L leaves [K, Q] = [K, V] invariant 

and/~" < L'. We conclude that/~" is quasisimple of one of the specified types. 

B u t / ~  is subnormal in i l ,  whence/~ is a component of i l .  This violates (9.1)(4), 

so the lemma is proved. 

We treat the two possibilities of the lemma separately, first proving 

LEMMA 9 .5 : / fL ,1  - L~(2"), n > 1, then G = L1 -~ L2(2"). 
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Proof: By choice, LI is subnormal in G, so by Proposition 6.1, for each i, 

1 < i < r, G contains an S-invariant subgroup Yi such that 

(1) l~ N S E Syl~(Yi); 

(2) ~ = E~ and S induces inner automorphisms on Li; 
(9.2) 

(3) = and 

(4) ~ is subnormal in G. 

Note that if r = I and LI S = G, then as S induces inner automorphisms on 

LI, it follows that LI -- {~, as asserted. Hence we can assume that either r > 1 

or LIS < G. In either case, this implies that I~S < G, 1 < i < r. As observed at 

the beginning of §8, we conclude now that each ]~ has Aschbacher form (relative 

to $). Since C(I~; S) < Go (as S char T), it follows that Y~ = Ki(Yi t3 Go), where 

Ki '~Yi and either Ki = 1 or Ki is a near component of type L2(2"). Since Yi is 

subnormal in G, so is Ki and hence either Ki = 1 or Ki is a near component of 

G. 

Now L~ = O2(Z)  2~ do,  so L~ = / ( ~  for each i. But G = L~' = L'T ,  so 

d = f Q . . .  KrGo as T < Go. Since C < Go, we have G = K1 ""  K-Go,  whence 

G has Aschbacher form, contradiction. 

Finally we prove 

LEMMA 9 . 6 : / f L 1  ~- A~,,+I, n > 2, then G ~ ~2,,+1 or A7 and correspondingly 

G contains a near component of  type A2,,+1 or small A7 type. 

Proof: Let i l  be a subgroup of L1 isonmrphic to A2,, and invariant under 

T1 = Ni,(L~ ), and let -Ti be a ~'-conjugate of ia contained in Li, 1 < i < r. Then 

i = Ia I2 . . .  t~ is T-invariant. Also clearly _T~' contains no components isomorphic 

to L2(2")  or A2,,,+1, and O(.?) = 1. Furthermore, if we let I be the preimage of 

_r in G, then I is T-invariant with Q < I and I T  < G, so I has Aschbacher form. 

However, as in the proof of Lemma 9.4, the structure of i implies that I contains 

no near components of the required types, whence I < Go. Thus T < G0. 

On the other hand, Proposition 7.1 yields that for each i, 1 < i < r, G 

contains an S-invariant subgroup Yi such that 

(1) Y~ f3 S E Syl~(Y~); 

(2) ~ ~- ~3 or As; 
(9.3) 

(3) F*(Yi) = 02(Yi); and 

(4) Li _< (fi, 12/). 
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However, since Li 2~ G0 mid Ii ~ Go, it follows that lFi /~ G0 for each i. 

But C < Go, so l~ 2~ Go, 1 < i < r. Clearly I~S < G, so YiS has Aschbacher 

form and consequently I~ = HIC(YI; S), where Hi is a near component of l~ of 

type L2(2) or L2(4). 

But now if we let Li be the preimage of Li in G, we conclude from Propo- 

sition 7.1(ii) that for each i, 1 < i < r, 

(1) Li = KiC, where Ki is a near component of Liof type A2,,+1 

or of small A7 type; and 
(9.4) 

(2) T contains a characteristic subgroup Pi such that Pi leaves Ki 

invariant and Pi N Ki E Syl2(Ki). 

If r -- 1, then as G has a singular 2-reduced setup, d = L I T  ~ E2n+l or 

d = AT, and the lemma holds. We can therefore assume that r > 1, whence 

each KiPi < G. But then KiPi has Aschbacher form (relative to Pi), so either 

Ki = C(Ki;  Pi) < Go (as Pi char T) or else 2n + 1 = 2 "  + 1 for some m. The 

first case is impossible since Ki = Li 2~ G0, so the second holds. Therefore 

G = K1K2.. .  K,-Go has Aschbacher form, again a contradiction, and the lemma 

is proved. 

This completes the proof of Proposition 9.1. 

10. The residual configurations 

We eliminate the three possibilities of Proposition 9.1 by showing that G has As- 

chbacher form, contrary to the choice of G. We preserve the preceding notation. 

We first prove 

PROPOSITION 10.1: I f G  - L2(2'~), n >_ 1, then G has Aschbacher form. 

Proof: Set G* = G/Q. Since Q E Syl2(C ) by Proposition 8.1, IC*I is odd and 

G*/C* -~ G. Furthermore, Go < G, so no nontrivial characteristic subgroup of 

T is normal in G. Hence if C* = ~(G*), Theorem 1.1 implies that O2(G) is a 

near component of type L~(2n), so G has Aschbacher form, as desired. We may 

thus assume that C* ~ ¢(G*).  

As G*/C* is either simple or isonmrphic to L~(2)( -  Ea), &(G*/C*) = 1, 

so ~(G*) < C*. However, as C* ,~G*, it is clear that every maximal subgroup of 

G* either covers G*/C* or else contains C*, so some maximal subgroup M* of 
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G* must cover G*/C*. Moreover, as IC*I is odd, we can choose M* to contain 

T*. Let M be the preimage of M* in G, so that T <_ M < G and G = M C .  In 

particular, since C _< Go, M ~ Go. It follows therefore from the minimality of 

G that M = KMo,  where K is normal near component of M of type L2(2 '~) and 

K ~ G o .  

Finally, G = M C  = KGo and h" ~ L2(2")'. Also [K, Q] has one nontrivial 

K-chief factor and [g, V] # 1, so [g, Q] _< Y. Set G = G / V ,  so that /~ centralizes 

Q. Put H = /~C. Since C centralizes V and Ca(Q) _< Q, C©(Q) _< Q, so 

CB({~) = /~Z(Q) ,  whence O2(C/=/(Q)) =/~'.  But Ck(Q),~H , so/~,~H. Thus 

[K, C] _< b N d 4 K. However, 0 is solvable, so R N ¢ _< Z(/~). Hence if R 

is nonsolvable, the three subgroups lemma yields tha t /~  centralizes C. On the 

other hand, i f /~ ~ Z3, then as K ~ Go,/~ N C = 1, so/~ centralizes C in this 

case as well. 

Thus K V , ~ K C .  But 0 2 ( K V )  = K ,  so K , 1 K C .  Since G = M C  and 

K , ~ M ,  K,~G,  so K is a normal near component of G. Hence as G = KGo,  

again G has Aschbacher form, and the proposition is proved. 

PROPOSITION 10.2: / fG  - -  ~"~2n+l, 1~ ~> 2, or A7, and K is a near component of  

G of  A2n+l type or small A7 type, respectively, then G has Aschbacher form. 

Proof: We have G : K C T  = KGo. If 2n + 1 = 2 m + 1, then G has Aschbacher 

form, so we may assume that 2n + 1 ¢ 2"' + 1. Set X = K T .  Thus G = XGo.  

If K is of small AT type, we apply Lemnm 5.3 to X and conclude that X _< Go, 

so G : Go, as needed. Otherwise we apply Proposition 5.2 to X and conclude 

that X < (H, Go}, where H < X, H is T-invariant, and H ~ A2n. As argued in 

the proof of Proposition 9.1, H _< Go, so again X _< Go and G = Go, and the 

proposition follows. 

Propositions 9.1, 10.1, and 10.2 now yield Theorem A. 
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